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Chaos

Chaotic systems are typified by:

◮ Sensitivity to initial conditions

◮ Attractor with fractional
dimension

Example: Lorenz model

◮ dx/dt = σ(y − z)

◮ dy/dt = x(ρ − z) − y

◮ dz/dt = xy − βz
◮ σ = 10, β = 8/3, ρ = 28
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Spatiotemporal Chaos

Some systems show disorder in both
time and space

◮ Sensitivity to initial conditions

◮ No long-range spatial correlations

Examples:

◮ Turbulence

◮ Some chemical reactions

◮ Fibrillation in heart

3 / 43



Introduction
Lifetime of Transient Chaos

Lyapunov Exponents
Intensive Quantities

Conclusions
Works Cited

Chaos
Spatiotemporal Chaos
Transient Chaos
Reaction-diffusion networks
Models
Extensivity

Transient Chaos

◮ In some systems, chaos suddenly collapses after a lengthy
chaotic interval

◮ In this case there is a chaotic saddle instead of a chaotic
attractor
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Reaction-diffusion networks (RDN)

◮ RDN are systems having a local reaction term and a diffusion
term

◮ The domain can be continuous or a discrete network of nodes

◮ Example: chemical reactions

◮ Example: animal populations
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Reaction-diffusion networks (RDN)

The general form of RDN dynamics is

d
dt
~y(x) = ~F(~y(x)) + D

d2

dx2
H~y(x).

Or, in discrete form

d
dt
~yi = ~F(~yi) + D

N
∑

j=1

GijH~yj

where typically
∑N

j=1 Gij is the discrete Laplacian

Gij = ∇2
ij = δi,j−1 − 2δij + δi,j+1.

Effective system size is determined by N/
√

D.
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Boundary conditions

Periodic No-flux Shortcut
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Gray-Scott model [GS84]
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Fa = 1 − a − µab2

Fb = µab2 − φb

H =

[

1 0
0 1

]

µ = 33.7, φ = 2.8

◮ Represents an open autocatalytic
reaction A + 2B → 3B and B → C

8 / 43



Introduction
Lifetime of Transient Chaos

Lyapunov Exponents
Intensive Quantities

Conclusions
Works Cited

Chaos
Spatiotemporal Chaos
Transient Chaos
Reaction-diffusion networks
Models
Extensivity

Gray-Scott model [GS84]
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Bär-Eiswirth model [BE93]
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Phase portrait Fa =
a
ǫ
(1 − a)(a − b + β

α
)

Fb = f(a) − b

f(a) =



















0 if a < 1/3
1 − 6.75a(a − 1)2 if 1/3 ≤ a ≤ 1

1 if a > 1

H =

[

1 0
0 0

]

α = 0.84, β = 0.07, ǫ = 0.12

◮ Describes a surface reaction model for
the oxidation of CO on Pt
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Bär-Eiswirth model [BE93]
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Wacker-Schöll model [WBS95]
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Phase portrait Fa =
b − a

(b − a)2 + 1
− τa

Fb = α(j0 − (b − a))

H =

[

1 0
0 8

]

α = 0.02, τ = 0.05, j0 = 1.21

◮ Describes charge transport in a
simplified model of layered
semiconductors
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Wacker-Schöll model [WBS95]
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Extensivity

Extended chaotic systems that have no long-range interactions are
expected to be uncorrelated at large length scales and therefore
should behave as a sum of their parts [Rue82].

Therefore, it can be expected that:

◮ DL ∝ N/
√

D

◮ ln 〈T〉 ∝ N/
√

D

(these measures will be defined later on)
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Transient Chaos
Average Lifetime

Transient Chaos

Space
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(a) (b) (c) (d) (e)

◮ (a) Gray-Scott, N=210
◮ (b) Bär-Eiswirth, N=460
◮ (c)-(e) Wacker-Schöll, N=500,460,420
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Average Lifetime: Gray-Scott model
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Average Lifetime

Average Lifetime: Bär-Eiswirth model
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Transient Chaos
Average Lifetime

Average Lifetime: Wacker-Schöll model
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Lyapunov Exponents

◮ Lyapunov exponents describe the rate at which small
perturbations expand or contract

◮ ǫ~v(t) = ~y′(t) − ~y(t) where ǫ is infinitesimal
◮ The largest Lyapunov exponent is positive in chaotic systems
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Lorenz model: sensitivity to initial conditions

19 / 43



Introduction
Lifetime of Transient Chaos

Lyapunov Exponents
Intensive Quantities

Conclusions
Works Cited

Lyapunov Exponents
Lyapunov Exponent Computation
Lyapunov Spectrum and Related Quantities
Extensivity
Y-Intercept

Lyapunov Spectrum

◮ The number of Lyapunov exponents is equal to the number of
degrees of freedom.

◮ They describe rates of expansion of infinitesimal perturbation
vectors belonging to a sequence of nested linear subspaces
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First Lyapunov Exponent
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Second Lyapunov Exponent
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Error Estimation

Convergence of Lyapunov exponent calculation is slow. Error is
estimated to be the difference between the final value and the
maximum deviation from this value during the last half of the
simulation.
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Lyapunov Spectrum
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Extensivity of Lyapunov Spectrum
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Lyapunov Dimension

The Lyapunov dimension, also called the Kaplan-Yorke dimension,

DL = j +
λ1 + . . .+ λj

|λj+1|
,

is conjectured to be equal to the information dimension for typical
attractors [Ott02].
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Sum of Positive Exponents

The sum of positive Lyapunov exponents,
∑+, represents an upper

bound for the Kolmogorov-Sinai entropy [Ott02].
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Extensivity of Lyapunov Dimension DL
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Extensivity of Sum of Positive Lyap. Exponents
∑+
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Y-Intercept of DL vs. N

◮ The y-intercept of DL vs. N should be zero for systems with
periodic boundary conditions

◮ Why?
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Y-Intercept of DL vs. N

◮ Take the linear ansatz DL(N)→ aN + b as N → ∞
◮ For large N, 2DL(N) = DL(2N)

◮ Therefore b = 0

◮ The results mostly verify this hypothesis
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Intensive Quantities

An extensive quantity divided by size gives an intensive quantity.

◮ Lyapunov dimension density: [Gre99]
δD ≡ limN→∞ N−1DL

◮ Log-lifetime density:
δT ≡ limN→∞ N−1 ln 〈T〉
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Intensive Quantities

So, what do these quantities mean? Consider transient chaos.

Space −→

←
−

T
im

e

Probability of collapse is PN/ξ, so lifetime takes the form [TL08]

〈T〉 ∼ P−N/ξ = e−(ln P) N
ξ ,

and log-lifetime density takes the form

δT =
− ln P
ξ
.
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Intensive Quantities

δT =
− ln P
ξ

◮ The quantity δT apparently has units of number of coins
tossed per unit length

◮ δT is computable whereas P and ξ are only defined intuitively
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A New Quantity

δT has dimensions of coins tossed per unit length and δD has units
of active degrees of freedom (i.e. attractor dimension) per unit
length. Taking their ratio eliminates the length units:

σ ≡ δT/δD .

This quantity has units of coins tossed per active degree of
freedom.
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A New Quantity

And what does σ mean? For large N,

δT = N−1 ln 〈T〉
〈T〉−1 = e−NδT

= e−NδDσ

= e−DLσ

= (e−σ)DL .

This leads to an intuitive argument for understanding the escape
rate from the chaotic saddle.
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Escape Route

Each time the chaotic trajectory ”orbits” around the chaotic saddle,
it has an opportunity of escaping into a non-chaotic state. Think of
a ”hole” in the chaotic saddle.
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Escape Route

〈T〉−1 = (e−σ)DL

◮ Ignoring the fact that the chaotic saddle has fractal dimension;
◮ Ignoring the fact that DL is only approximately equal to the

saddle dimension;
◮ Considering the saddle as being approximately a set product

of smaller saddles;
◮ Then (e−σ)DL is the volume of a hypercube of width e−σ and

dimension DL.
◮ So, can we find a feature in the chaotic saddle that is size

e−σ?
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Escape Route

Well, it’s not quite that easy.

〈T〉−1 = (e−σ)DL

◮ e−σ is actually the geometric mean of the hole’s widths along
each dimension

◮ The trajectory passes by certain areas more often than
others, and this needs to be taken into account

◮ So, the interpretation is not so clear cut
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Escape Route

Gray-Scott Bär-Eiswirth Wacker-Schöll
e−σ ≈ 0.28 e−σ ≈ 0.62 e−σ ≈ 0.85
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Discretization Error

◮ Effective system size is determined by N/
√

D
◮ Small N =⇒ more efficient computation
◮ Small D =⇒ more discretization error
◮ What is the limit?
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Conclusions

◮ ln 〈T〉, DL, and
∑+ grow linearly with size

◮ DL and
∑+ are constant for N/

√
D fixed

◮ Boundary conditions affect x-intercept (but not slope) of ln 〈T〉
and DL vs. N

◮ Y-intercept for DL vs. N should be zero for periodic boundary
conditions

◮ The quantity e−σ may relate to escape routes from the chaotic
saddle
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