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Nonlinear Noise Reduction

Noise reduction is an essential step in any measurement process.  Traditionally noise reduction 
has made use of linear techniques such as the Fourier transform which work by separating the signal 
from the noise in frequency space or another linear space.  Many signals however cover the same 
spectral region as the noise and so need an improved filtration technique.1  If a signal comes from a low 
dimensional deterministic chaotic system (and sometimes even if it doesn't) then nonlinear methods can 
be used with amazing success.  The algorithm described in this paper involves projection onto a low 
dimensional chaotic attractor that has been embedded into a higher dimensional space.  This nonlinear 
projection method works well for stationary deterministic systems and with care can be used with 
slowly varying non-stationary data as well.  Applications include cleaning of noisy speech or ECG 
signals and extraction of a small fetal ECG signal that is mixed with a maternal ECG signal.

Phase Space

A deterministic flow can be described by a set of variables which evolve over time . 
Most of the time the  are not measured directly but indirectly at discrete time intervals via a 
measurement function .2  For the purpose of discussion assume that only a single scalar value  is 
measured at each time , although it is easy to generalize to the case of multi-valued measurements. 
At first glance it may seem that too much information has been lost in projecting the tuple  onto the 
scalar  but it turns out that the chaotic attractor can be reconstructed using a set of delay vectors 

.  A theorem by Takens and Sauer et al. shows that this works for 

almost all lags , all sampling rates , and all smooth measurement functions  as long as the delay 
vector has a dimension of at least  where  is the box-counting dimension of the attractor.3

The box-counting dimension may not be known ahead of time so some caution must be taken in 
choosing the embedding dimension.  There is usually no harm in choosing the dimension to be too high 
other than some additional computational complexity.  ECG data are often embedded in a space of 
dimension 50 or higher.  Several techniques are available for testing whether the chosen dimension is 
high enough.  In particular, the projected data must be deterministic (ie. paths must not cross).

Simple Noise Reduction

Most nonlinear prediction or noise reduction methods involve searching the history of the signal 
for trajectories similar to the portion under consideration.  Trajectories that are similar in the past will 
tend to diverge in the future due to the positive Lyapunov exponents of  and trajectories that are 
similar in the future will tend to have divergent histories due to the negative Lyapunov exponents and 
these divergences are exaggerated by the measurement noise.4  On the other hand, trajectories that are 
similar in both past and future will tend to have temporal center points that match well.  The simplest 
noise reduction then consists of replacing each sample with the average of all samples that have similar 
past and future trajectories:

1 T. Schreiber, H. Kantz, Nonlinear projective filtering II: Application to real time series. (1998)
2 R. Hegger, H. Kantz, Embedding of sequences of time intervals. (1997)
3 R. Hegger, H. Kantz, Embedding of sequences of time intervals. (1997)
4 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 52.



where  represents the set of all delay vectors in the vicinity of .5  A good choice for  is 
usually about 2-3 times the noise amplitude, with a lower value being less likely to introduce artifacts.6 
Typically the Euclidean norm is used but it is sometimes beneficial to use for example the max norm.7

The processes of finding the neighbors of each point in phase space is the most expensive step 
in most nonlinear noise reduction algorithms.8  The naive approach of checking the distance between 
each pair gives a running time of  but using a binary tree approach can give  time and 
a box assisted search can potentially reduce the search time to .9  Typically the entire algorithm is 
iterated 2-5 times with a smaller value of  used in each iteration as the noise decreases.10

Locally Projective Noise Reduction

A more refined approach involves projecting the measured trajectories onto the surface of a low 
dimensional attractor.  The justification for this is that the data should ideally be confined to a chaotic 
attractor of a certain dimension and any deviation from this attractor is therefore due to measurement 
noise.  The attractor is locally approximated by a tangent space whose shape is determined using a local 
principal component analysis.11  The largest few principle components correspond to the subspace of 
the attractor and the remaining components correspond purely to noise.12  The trajectories are then 
projected onto the attractor with the effect of reducing noise.  This can be thought of as a local version 
of the singular systems approach that takes into account the curved structures of nonlinear systems.13  It 
can also be thought of as a locally first-order (linear) approximation of phase space structure whereas 
the simple algorithm described in the previous section was a locally zeroth-order (constant) 
approximation.14

As in the simple algorithm of the previous section, the first step is to compute the neighborhood
 of each vector .  Principal component analysis is performed by first computing the mean

and then the covariance matrix

.15

The eigenvectors of  will then represent the semi-axes of the ellipsoid best approximating the cloud 
of points in .  Ideally the covariance matrix will have large eigenvalues spanning the attractor 
manifold and low eigenvalues in other directions.16  Projecting each vector onto the space spanned by 
the largest eigenvalues will move it closer to the manifold thereby creating a more accurate 

5 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 53
6 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 54
7 T. Schreiber and M. Richter, Fast nonlinear projective filtering in a data stream. (1999)
8 T. Schreiber and M. Richter, Fast nonlinear projective filtering in a data stream. (1999)
9 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 56
10 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 56
11 H. Kantz and T. Schreiber, Nonlinear projective filtering I: Background in chaos theory. (1998)
12 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 157
13 T. Schreiber and M. Richter, Fast nonlinear projective filtering in a data stream. (1999)
14 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 52, 156
15 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 158
16 H. Kantz and T. Schreiber, Nonlinear projective filtering I: Background in chaos theory. (1998)



approximation of the true dynamics of the system.  Each measurement value occurs in  different 
vectors (where  is the dimension of the embedding) so an average needs to be taken over the 
corrections corresponding to each embedding vector that contains a given measurement.17  Because of 
this averaging the vectors will not be projected exactly onto the manifold but will still be moved closer 
to it.  The procedure must be iterated several times to reach convergence.18

There is a trade off involved in the choice of neighborhood size.   must be larger than the noise 
level in order to give a fair representation of the manifold shape but must also be small enough so that 
curvature effects don't interfere with the linear approximation.19

Since vectors are projected towards the center of mass of their neighborhood there is a tendency 
for corrections to be biased toward the direction of curvature as can be seen in the figure below.  The 
end result after noise reduction is then a manifold that has the same details and invariant quantities 
(such as fractal dimension) but is somewhat distorted in comparison to its true shape.  There is a simple 
correction for this drift – the average centers of mass of the adjacent neighborhoods (open dot in figure) 
will tend to be twice as far from the manifold (diamond) as the center of mass  (closed dot in center). 
A corrected center of mass is therefore given by

.20

The centers of mass (closed dots) tend to be biased towards the direction of curvature.  The average of the 
center of mass of adjacent neighborhoods (open dot) is about twice as far from the ideal location (closed 
diamond).  This can be used to estimate an ideal center location.

The simple noise reduction algorithm described in the beginning of this paper made corrections 
only to the temporal center points of the delay vectors to avoid magnification of errors due to positive 
or negative Lyapunov exponents and it is advantageous to make use of a similar technique here.  This 
is typically done by transforming the vectors using a weight matrix  corresponding to a metric that 
penalizes corrections to the first and last elements of the delay vector21 (eg.  and 
all other diagonal elements set to 1).22

Modifications can be made to this algorithm to make it suitable for real-time use.  First of all, in 
a real-time situation only phase space vectors from the past are available.  Thus only causal vectors are 
included in the neighborhoods and to cope with possibly changing dynamics (and for computational 
simplicity) only vectors that are more recent than a time  are used.  The cutoff  is chosen so that 
the number of vectors in the neighborhood does not exceed a specified .23  The algorithm then 
proceeds as before but in the interest of speed the principle component information is reused for all 

17 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 159
18 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 159
19 H. Kantz and T. Schreiber, Nonlinear projective filtering I: Background in chaos theory. (1998)
20 H. Kantz and T. Schreiber, Nonlinear projective filtering I: Background in chaos theory. (1998)
21 H. Kantz and T. Schreiber, Nonlinear projective filtering I: Background in chaos theory. (1998)
22 H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (1997), page 160
23 T. Schreiber and M. Richter, Fast nonlinear projective filtering in a data stream. (1999)



vectors in a small region of phase space.24  Between the limited temporal range of points considered 
and the recycling of principle components the algorithm is fast enough that it could run three iterations 
on a real-time data stream sampled at 91 Hz on a computer from 1998.25

Application: Extraction of Fetal ECG

The previous section dealt with removing noise from a signal but nonlinear projection can in 
fact be used to extract any small signal that has been mixed with an appropriate larger signal.  In 
particular, it is possible to separate a weak fetal ECG signal that has been measured along with a 
mother's ECG.26  This is something that is not at all possible using Fourier techniques because the two 
ECGs have nearly identical spectral components.  A local projective noise reduction is done on the 
combined signal using a neighborhood size large enough to encompass the fetal signal and the fetal 
signal is removed as if it was noise.  The removed signal (fetal + noise) is then cleaned to remove 
actual measurement noise.  What remains is a fetal signal that, while not revealing its full structure, is 
good enough to at least determine the pulse rate.27

(a) An ECG signal represented in delay coordinates. (b) A small and faster ECG signal similar to a fetal 
component.  The shape appears different because the pulse rate is faster. (c) Superposition of the two signals. 
The fetal signal causes a small perturbation but the shape of the manifold stays the same.28

Extraction technique applied to real-world 
data: the first line shows combined signal, the 
second line shows result of first application of 
noise reduction (only maternal component 
remains), the third line shows the data that 
was removed and consists of the fetal signal 
along with measurement noise, and the last 
line shows the result after a second 
application of noise reduction which gives a 
cleaned version of the fetal signal.29

24 T. Schreiber and M. Richter, Fast nonlinear projective filtering in a data stream. (1999)
25 T. Schreiber and M. Richter, Fast nonlinear projective filtering in a data stream. (1999)
26 M. Richter, T. Schreiber, D. T. Kaplan, Fetal ECG extraction with nonlinear state-space projections. (1998)
27 M. Richter, T. Schreiber, D. T. Kaplan, Fetal ECG extraction with nonlinear state-space projections. (1998)
28 M. Richter, T. Schreiber, D. T. Kaplan, Fetal ECG extraction with nonlinear state-space projections. (1998)
29 M. Richter, T. Schreiber, D. T. Kaplan, Fetal ECG extraction with nonlinear state-space projections. (1998)
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Non-stationary Data

Locally projective noise reduction makes the assumption that the system under consideration 
produces a trajectory that lies on a low dimensional manifold and this is more likely to be true if the 
data is stationary (ie. if the parameters that define the dynamics are fixed).  Most real-world systems 
are however not stationary.  For example biological signals such as ECG or breath rate data cannot be 
expected to remain stationary for long periods of time because conditions in the body are constantly 
fluctuating.  Speech is an example of a signal that remains stationary for a time (the duration of a 
phoneme) and then rapidly changes in character.30

The obvious solution is to split the time series into small segments with the hope that the data is 
mostly stationary during each segment.  The disadvantage is that there will be less data to draw from 
and therefore fewer vectors in each of the neighborhoods and this will severely impact phase space 
methods.31

Another solution is to increase the embedding dimension.  Instead of using  for the 
embedding dimension,  is used where  is the number of non-stationary parameters. 
This is only mathematically correct if the  parameters themselves form a stationary chaotic system 
but in practice it works well with only the condition that the parameters vary slowly and have only rare 
sudden changes.32  In this higher dimensional embedding space the neighbors of a vector should all 
correspond to states with similar parameters.  The advantage over the time segmentation method is the 
larger database of values since measurements from different time periods that have the same 
parameters will be available.33

If a transition takes place suddenly the delay vectors corresponding to the transition period will 
not have any neighbors in phase space.  This can be used as a primitive detection of transitions as seen 
in the figure below which corresponds to a human voice.  For each time  a point is plotted at all 
neighboring times  which occupy the same neighborhood of phase space.  The stripes represent 
periodicity and the blank areas represent transitions between phonemes.34

30 K. Urbanowicz, H. Kantz, Improvement of speech recognition by nonlinear noise reduction.
31 R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Coping with nonstationarity by over-embedding. (2000)
32 R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Coping with nonstationarity by over-embedding. (2000)
33 R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Coping with nonstationarity by over-embedding. (2000)
34 R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Coping with nonstationarity by over-embedding. (2000)



Experiment: Extracting Audio From Lorenz Attractor

Kevin Cuomo and Alan Oppenheim created an electronic circuit that can obscure audio signals 
my mixing them with the output of an analog computer that simulates the Lorenz system.  The 
receiving end consists of another Lorenz system which is designed to fall into synchrony with the 
transmitter.  The synchronized Lorenz signal is then subtracted out and the original audio signal is 
recovered - fuzzy, but recognizable.35  I wanted to see if the decoding could also be done using a 
technique similar to what was used to extract the fetal ECG signal.

100,000 samples of a Lorenz trajectory were generated using the parameters 
 and .  The first 10 seconds of Beethoven's 5th where then recorded at 

10,000 samples/sec and scaled to be approximately 40dB quieter (100 times smaller numerically) than 
the Lorenz data.  The continuous spectrum of the Lorenz system completely obscures the audio signal 
and renders any sort of Fourier technique ineffective.

Spectrum of Lorenz signal (top) and audio signal (bottom).  The audio signal is approximately 40dB quieter 
(100 times smaller numerically) and is therefore completely obscured when added to the Lorenz signal.

To decode the data I used the project command from the TISEAN package36 which implements 
nonlinear projective noise reduction as described in this paper.  I used an embedding dimension of 15 
and projected onto a manifold of dimension 3, iterating 10 times.  The cleaned signal then represented 
the Lorenz system with the Beethoven signal removed.  Subtracting this from the mixed 
Lorenz+Beethoven signal then produced the original Beethoven, with some distortion.  The recovered 
audio didn't sound too good but it was amazing that it was recovered at all – the Lorenz+Beethoven 
signal subjectively sounds completely identical to the raw Lorenz signal.

The recovered audio stream has a loud crackling and sounds like it is being played off of a 
badly scratched record.  My guess is that the noise reduction does not perform optimally when the 
Lorenz trajectory skips from one lobe to another of the attractor, leading to a “pop” sound whenever 
this happens.  Perhaps as the trajectory transfers to the other lobe and gets injected back into the saddle 
point the attractor is less planar than it is elsewhere.  This could possibly interfere with the principle 
component analysis in these regions.  The dimension of the attractor is approximately 2.0637 so Taken's 
theorem demands an embedding dimension of at least 5.  It is possible that 3 dimensions are sufficient 
everywhere except for the places where the two lobes connect to each other.  I tried using a variety of 

35 S. Strogatz, Nonlinear Dynamics and Chaos. (1994)
36 http://www.mpipks-dresden.mpg.de/~tisean
37 http://en.wikipedia.org/wiki/Lorenz_attractor



embedding dimensions and manifold dimensions and found the best results to be an embedding 
dimension of 15 (the largest allowed by the program) and a projection dimension of 3.

It occurs to me that the projective filter is not completely optimal for fractional dimensional 
systems.  For example, the direct product of three Cantor sets has a dimension less than 2.0, but the 
Euclidean dimension which is relevant to the principle component analysis is 3, a whole integer value 
too high.  This could have possible consequences in the case of the Lorenz system whose Hausdorff 
dimension is so close to 2 but probably can be nowhere represented in a space of Euclidean dimension 
less than 3.  It is not obvious to me how the algorithm could be modified to account for this.

Conclusion

Nonlinear projective noise reduction can potentially be a powerful technique but it certainly is 
no panacea.  When a data set comes from a low dimensional, stationary, deterministic chaotic system 
the algorithm works like a charm even if the noise level is quite high whereas linear filters would be 
ineffective.  If the data to be processed consists of both deterministic and stochastic components (such 
as ECG signals) the noise reduction is still useful and even if the system is non-stationary the 
embedding dimension can be raised as long as the non-stationary parameters vary slowly.

Some amount of trial and error is involved in choosing the parameters such as embedding 
dimension, manifold (projection) dimension, and neighborhood size.  If the box counting dimension of 
the attractor is known then the theorem by Takens and Sauer states that a minimum embedding 
dimension is , but there are some practical considerations that need to be taken into account 
such as possible non-stationarity of the system and ensuring that different parts of the attractor are 
separated by at least the neighborhood size, which becomes a concern when noise is high.  Choosing an 
embedding dimension that is too high is usually safe and can aid separation in situations of high noise 
levels but adds to computational complexity in the search for neighboring points and computation of 
principal components.  The dimension of the subspace that the algorithm projects to is even less clear 
cut.  It would seem that the box counting dimension rounded up to the next integer value would be 
good here but in practice the optimal value depends upon the particular situation.38  The neighborhood 
size must be larger than the noise level and in fact the type of noise to be removed can be chosen by 
varying the neighborhood size.  In this way the nonlinear technique can be seen as selecting a signal 
based upon amplitude as opposed to Fourier techniques which select based upon frequency.39

Care needs to be taken when interpreting the results of noise reduction – even Gaussian noise 
will be made to look structured after being passed through this algorithm:

Gaussian noise, before and after noise reduction40

It is therefore important to test the data for determinism or to check whether the results are different 
compared to a surrogate data set that is randomly generated with the same statistical properties as the 

38 http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/node24.html
39 http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/node24.html
40 http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/node24.html



real data.41

The extraction of the fetal ECG signal is an impressive example but I think that it represents a 
best case scenario.  I downloaded a sample data set from the PhysioBank database42 and tried to 
reproduce the results but it didn't work because the fetal ECG was orders of magnitude weaker than in 
the textbook example.  This is probably a function of electrode placement.  It is impressive that the 
nonlinear projective technique is able to perform this task with no programmed knowledge about the 
system being monitored but for optimal results very specialized techniques can be used.  A quick 
search on the Internet will reveal descriptions of systems built of many modules usually including 
neural networks.  Still, it says a lot that one algorithm can extract a signal from both an ECG and from 
a Lorenz system with no specialized modifications needed in either case.

41 http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/surropaper/Surrogates.html
42 http://www.physionet.org/physiobank
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