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Abstract

This dissertation contains results on three quite different topics. First, I investigate the entanglement
resources required for two parties to jointly implement a unitary operation using local operations
and classical communication (LOCC). If this resource is of smallest feasible Schmidt rank then it
must be maximally entangled. If the Schmidt rank is higher, less entanglement may suffice.

Second, I investigate the source of the “quantum speedup”. I quantify quantum interference and
show that in order for a quantum computer to be significantly faster than a classical computer, it
must make use of operations capable of producing large amounts of interference (or a large number
of operations that can produce small amounts of interference). A quantum computer not making use
of such a resource can be efficiently simulated by a classical computer.

Third, I investigate zero-error source-channel coding. In this scenario, Alice wishes to convey a
message to Bob through a noisy channel, with zero chance of error, in the case where Bob already
has some prior knowledge regarding the message that is to be sent. For classical messages and
classical channels, it was known that three graph invariants of Lovász, Szegedy, and Schrijver provide
necessary conditions for this task. We show that this applies also when Alice and Bob make use of
an entangled state, unifying and extending a series of previous results.

Finally, I introduce a fully quantum version of source-channel coding where the message to be
sent, the channel, and the side information are all quantum. Whereas the classical case makes use of
graphs, the quantum case makes use of non-commutative graphs. I generalize the concept of graph
homomorphism, as well as the Szegedy and Schrijver numbers, to non-commutative graphs and show
that the necessary conditions for the classical case generalize to the quantum case. Using this theory,
I construct a quantum channel whose one-shot zero-error entanglement assisted capacity can only
be unlocked using a non-maximally entangled state, showing that in this case less is more when it
comes to entanglement resources.
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1.1 Introduction
This introductory chapter begins with a brief overview regarding the history of and contemporary
issues in the field of quantum information, in relation to the results of this dissertation (section 1.2).
Some mathematics and physics background will be introduced in section 1.3. Section 1.4 consists of
a brief overview of the technical results of this dissertation.

1.2 Historical background and context

1.2.1 Quantum computing

The idea that quantum mechanics could be harnessed to solve problems (specifically, simulation of
quantum systems) that are infeasible on traditional computers was discussed over 30 years ago by
Feynman [Fey82], though some information theoretical investigation of quantum mechanics predates
this [Wik14].

Deutsch and Jozsa developed the first quantum algorithm that is provably much faster than any
possible classical algorithm [DJ92]. “Faster” in this context means that the runtime of the quantum
algorithm scales in a better way as the problem size grows; although the quantum algorithm may be
slower for smaller problem instances due to, for instance, quantum gates being slower than classical
digital logic gates, for larger problems the quantum algorithm will be superior. In the Deutsch–Jozsa
algorithm, one is given access to some function f which takes as input integers from 1 to 2n as
produces as output 0 or 1. Access to f is via a sort of black box in which one is allowed to query
f(x) for a given x but is not allowed to peak inside the box to see how it works. The goal is to
determine whether f is a constant function or whether it takes value 1 exactly half of the time. The
Deutsch–Jozsa algorithm solves this problem using only a single query, provided that the box may
be queried using a quantum superposition. Any classical algorithm would require at least 2n−1 + 1
queries in the worst case, in order to solve the problem with certainty.

A weakness of this result is that a classical algorithm could solve the problem nearly as fast as
Deutsch and Jozsa’s quantum algorithm, provided one allows a very small probability of error. Simon
improved upon this result, constructing a slightly more complicated problem which can be solved
using order of n queries by a quantum computer but which requires at least order of 2n/2 queries
on a classical computer, even if one allows some probability of error [Sim94]. As was the case with
the Deutsch–Jozsa problem, Simon’s problem involves a function f which one can only access in a
black-box manner (i.e. one is given a box which, given x, produces f(x)). Simon’s problem is to
determine the value s such that f(x) = f(y) if and only if y = x ⊕ s, given that such an s exists.
The operator ⊕ is bitwise addition modulo 2. Simon’s problem is of little practical use, but served
as the inspiration for Shor’s algorithm for finding the prime factors of a number [Sho99]. Shor’s
algorithm runs in time order of n3 where n is the length of the number to be factored, whereas the
fastest known classical algorithm runs in time order of 2cn

1/3(logn)2/3 for c ≈ 1.92 [Wei14]. Shor’s
algorithm is important since, if implemented, it would negate the security of many widely used
public key cryptography schemes. For example, the RSA [RSA78] and elliptic curve [Kob87,Mil86]
cryptosystems are vulnerable to Shor’s algorithm (or variations thereof). The McEliece [McE78]
cryptosystem is not known to be vulnerable. For more information regarding which cryptographic
schemes are or are not vulnerable to quantum algorithms, refer to [BLCP14].

Grover devised a quantum algorithm for the problem of unstructured search (“searching for a
needle in a haystack”) [Gro96]. Here the goal is to find an input x such that f(x) = 1, given black
box access to some function f which takes as input numbers from 1 to N and produces as output 0
or 1. As was the case with the Deutsch–Jozsa problem, “black box access” here means that one may
query f to obtain f(x) for a given x but one is not for example given any description of a circuit
which implements f . Grover’s algorithm requires only order of

√
N queries of f whereas classically

an average of N/2 queries are needed. Grover’s algorithm solves a very widely applicable problem;
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however, the gains are modest unless N is extremely large. Because the quantum advantage is so
modest for Grover’s algorithm when N is small, it will probably not have practical implications until
it is possible to build a quantum computer with gate speed and gate count comparable to that of
today’s classical computers.

Although these algorithms, and others, demonstrate that quantum computers can be more
powerful than classical computers, the source of this “quantum speedup” remains a bit of a mystery.
Ad-hoc explanations abound in relation to particular algorithms (e.g. Grover’s or Shor’s), but general
principles are lacking. Entanglement, measured in various ways, has been shown to be necessary
for quantum speedup [Vid03, JL03,Eas10]; however, universal quantum computation (and hence
quantum speedup) is possible using states arbitrarily close to having no entanglement at all [Nes12].
Other explanations have been proposed and also found to be problematic. For an overview, see
section 9 of [FRS12].

In chapter 3 I propose quantum interference as a necessary resource for quantum speedup.
Previously interference has been mentioned as being important for quantum speedup, but only
in a vague and non-quantitative way. I define a measure of interference and show that quantum
operations incapable of producing much interference (those of low interference producing capacity)
cannot produce much quantum speedup. This opens up a new previously unexplored avenue in the
study of quantum speedup. An intriguing open question is whether interference itself, rather than
interference producing capacity, is necessary for quantum speedup.

1.2.2 Entanglement

Here we provide an informal overview of historical developments regarding entanglement. For a
formal definition of entanglement see section 1.3.7.

In 1935, Einstein, Podolsky, and Rosen (EPR) proposed a thought experiment in which two
spatially separated parties (Alice and Bob, in modern terminology) each measure one of a pair of
entangled particles [EPR35]. If the two parties perform similar measurements then the outcome
of one perfectly predicts the outcome of the other, similar to a situation in which a coin is cut in
half lengthwise with the two pieces (heads and tails) randomly distributed to the two parties: if
Alice sees heads, she knows Bob has tails. Now, for the entangled particles, suppose Alice measures
position. The outcome of this measurement determines the position of Bob’s particle. So Bob’s
particle must have a well defined position. On the other hand, Alice could measure momentum, and
this would determine the momentum of Bob’s particle, so Bob’s particle must have a well defined
momentum. EPR conclude that both the position and the momentum of Bob’s particle have well
defined values, even though we might not know ahead of time what these values are. Since this is
in apparent violation of Heisenberg’s uncertainty principle, the theory of quantum mechanics must
be incomplete. Bohm (chapter 22 of [Boh51]) applied the conceptual ideas from the EPR thought
experiment to a simpler scenario involving spins rather than position and momentum.

The notion that all measurable properties of particles have well defined values (even before
measurement), and that these values don’t depend upon spatially distant events, is now referred
to as a local hidden variable model. It turns out such local hidden variable models cannot describe
quantum mechanics, since the correlations in EPR-like experiments go beyond what is allowed
in a local hidden variable model. This is a subtle point and went unnoticed for nearly thirty
years. In 1964, Bell formalized the local hidden variables model by assuming all properties of
each particle are well defined (although they may be random due to our lack of knowledge) and
measurements on one particle do not affect the properties of the other. He showed the correlations
predicted by quantum mechanics fall outside of the set of such correlations [Bel64]. Specifically,
he produced an inequality (Bell’s inequality) involving the probabilities of various measurement
outcomes which must be satisfied by any local hidden variables model. The measurement outcomes
predicted by quantum mechanics violate this inequality. These beyond-classical correlations due
to quantum mechanics have since been experimentally verified in a great variety of ways (see,
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e.g., [FC72,AGR81,WJS+98,RKM+01,GMR+13]), so it is widely believed that nature cannot be
described in terms of local hidden variable models. The philosophical implications of this result have
been widely studied, and are a subject of debate even to this day.

There are also a number of practical applications of entanglement. If a sender and a receiver
possess an entangled state, the sender may convey two bits of classical information by transmitting
only a single qubit to the receiver; this is known as superdense coding [BW92]. Conversely, the
sender may transmit the state of a single qubit by communicating two classical bits; this is known
as teleportation [BBC+93]. These two protocols will be explained in section 1.3.13. More recently,
entanglement has found application in the creation of certifiably random numbers [VV12].

Entanglement can be helpful for distributed quantum computation. Suppose one desires to perform
a quantum computation on the joint state of two spatially separated subsystems. Further, suppose
that one has access to a classical communication channel (e.g. telephone) between these subsystems
but cannot communicate quantum information such as qubits. In this situation, performing the joint
computation (a unitary operation) requires use of some extra resource such as entanglement.

In chapter 2 I investigate the amount of entanglement needed for this task. One may expect that
implementing an operation very close to identity (i.e. one that changes the input state by only a small
amount) would not require much entanglement. This is not the case: I prove that if the entanglement
resource is of smallest possible Schmidt rank then it must be maximally entangled, regardless of the
unitary operation being performed. This extends (via a different and simpler technique) a recent
result which only applied for Schmidt rank 2 [STM11a]. If the resource state is of larger Schmidt
rank, then less entanglement suffices in some cases. So there is a trade-off between two resources:
Schmidt rank and entropy of entanglement.

1.2.3 Quantum generalizations of graph theory

In addition to the philosophical and the practical aspects of entanglement, there are many interesting
mathematical aspects. Suppose that Alice and Bob are locked in separate rooms and are not allowed
to communicate. A referee asks each of them a question, and Alice and Bob (who are in alliance and
can discuss their strategy ahead of time) receive some payoff depending upon their answer. Alice
and Bob know ahead of time the types of questions that may be asked and the payoffs corresponding
to the various possible answers. If Alice and Bob are in possession of an entangled state, they can
sometimes achieve a larger average payoff. The CHSH [CHSH69] variant of Bell’s inequality, and
many of its generalizations, are of this form (even if not originally stated as such). Specifically, these
variants of Bell’s inequality place limits upon the maximum possible payoff in the case where no
entanglement is involved, and with entanglement these limits are surpassed. For the entanglement
enhanced case, Alice and Bob each perform some measurement on their share of the entangled state.
The choice of measurement depends upon the question asked by the referee, and Alice and Bob’s
answers depend upon the outcomes of these measurements. For an overview, see [BCP+14].

One can also consider variations of this game in which certain pairs of answers are absolutely
forbidden. Bell’s original inequality was of this form: when Alice and Bob are asked to perform
the same measurement, their answers must be perfectly anti-correlated. In other words, Bell only
considered cases where Alice and Bob never provide the same answer when asked the same question.

Many problems from mathematics and computer science can be phrased in terms of such games.
For example, consider the chromatic number of a graph. This is the minimum number of colors
needed in order to color the vertices of the graph in such a way that adjacent vertices have different
colors (a proper coloring). Suppose Alice and Bob claim (perhaps deceitfully) to have a proper
coloring of a graph using n colors. A skeptical referee may then put them in separate interrogation
rooms and ask them each for the color of one of the vertices. If the referee asks them both about
the same vertex, their answers must coincide. If the referee asks Alice about one vertex and asks
Bob about an adjacent vertex, then they must answer with unequal colors. The referee asks such a
question only a single time. Classically, Alice and Bob can win this game (supply correct answers)
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with no chance of failure if and only if the graph can indeed be colored by n colors—in other words,
if n is at least as large as the chromatic number of the graph.

In 2002, Galliard and Wolf [GW02] showed if Alice and Bob are in possession of an appropriate
entangled state then for certain graphs they can win this game even if n is less than the chromatic
number; the minimum number of colors needed in this case is now called the quantum chromatic
number. Other graph concepts, namely clique number and homomorphism (which will be defined in
section 1.3.10), can also be cast as games similar to the above and so have quantum generalizations
(quantum clique number and quantum homomorphism). These have been well studied, see [RM12]
and the references therein for details.

In general it may be very difficult to determine whether there is a quantum homomorphism
between two given graphs; in fact this is not even known to be computable at all. A common
technique in such situations is to relax the conditions in order to create a more tractable problem.
Any necessary conditions that apply to the relaxed problem apply also to the original problem. In
chapter 4 we adopt such a strategy, studying a semidefinite relaxation of the quantum homomorphism
problem. We find that this semidefinite relaxation is closely related to necessary conditions given
in [RM12,Rob13] involving the Lovász ϑ number and its variants. We also show that this semidefinite
relaxation is not tight: there are graphs for which the relaxed conditions can be satisfied but the
original conditions cannot.

Recently, even the graphs themselves have gained a quantum generalization [DSW13]. We will
expand upon this at the end of the next subsection.

1.2.4 Zero-error information theory

In 1948, Shannon developed a mathematical theory of communication in which he studied the rate at
which data can be transmitted through a noisy channel [Sha48]. A telephone wire, a radio transmitter
and receiver, or even the postal service can be considered as channels. The formal definition of
channels will be given in sections 1.3.8 and 1.3.9. One may consider the number of bits that can be
reliably transmitted with a single use of the channel (one-shot capacity) or the average number of bits
that can be reliably transmitted per use of a channel, in the limit of many uses (asymptotic capacity).
The entire input is encoded using some compression or error correction scheme before being sent
through the channel, and is decoded by the receiver. Typically, one defines “reliable” transmission by
mandating the error rate be very small, approaching zero as the number of channel uses increases.

Alternatively, one may require absolutely zero chance of error. This zero-error case was also
studied by Shannon [Sha56]. One advantage of studying zero-error capacity is that one can obtain
strong and often easily interpreted guarantees on accuracy. For instance, it is possible to store
information on an array of hard disks in such a way that if any two disks fail the information can be
perfectly recovered with zero chance of error. Here, the array of hard disks may be considered as a
channel, transmitting information from yesterday to today; the “noise” of this channel corresponds to
loss of any two disks. Zero-error information theory can be used to determine the maximum possible
amount of information that can be stored on the disks while still maintaining this level of resilience.

Shannon [Sha56] showed that zero-error capacity for a single use of a channel can be computed
via a graph derived from the channel, and the capacity for many parallel uses of the channel is a
function of a suitably defined product graph. The definition of this graph, called the confusability
graph, will be given in section 1.3.11. One may then speak of the Shannon capacity of a graph, with
the understanding that this corresponds to the zero-error capacity of the underlying channel. The
simplest nontrivial case is the pentagon graph C5. The Shannon capacity of C5 remained unsolved
for over two decades, finally being resolved by Lovász in 1979 [Lov79]. The quantity therein defined
is now known as the Lovász ϑ number of a graph (we give the definition in section 1.3.10). The
Shannon capacity of the 7-cycle graph (the heptagon) is still an open question.

Recently, a study has begun of the zero-error capacity of channels in the case where sender
and receiver are in possession of an entangled state. In 2010, Cubitt, et al. [CLMW10] showed
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entanglement can increase the number of error-free messages that can be sent through a classical
channel. A similar result for the asymptotic capacity (the limit of many channel uses) appeared
in 2012 [LMM+12]. It turns out Lovász’s bound on the capacity of a channel still applies in the
presence of entanglement [Bei10,DSW13].

One may consider the case where the receiver already has some side information regarding
the message to be sent; this is known as zero-error source-channel coding. Again the problem is
analyzed using graphs, now with one graph representing the source and another graph representing
the channel [NTR06]. Very recently, the entanglement assisted version of this problem has been
studied [BBL+13]. There, the Lovász number (in fact, even a strengthened version due to Szegedy)
was proved to provide a bound on entanglement assisted zero-error source-channel coding in the case
where the channel is noiseless.

In chapter 4 we extend this result to the case of a noisy channel, as well as providing other novel
results and reproducing many existing results under a unified framework. Specifically, we consider
a semidefinite relaxation of this problem, similar to the one described in the previous subsection
(in fact, entanglement assisted zero-error source-channel coding is mathematically very similar to
the quantum homomorphisms described in the previous subsection). We prove a theorem which
encompasses and generalizes the results of both [Bei10] and [BBL+13]. Further, we show that these
results are the best that can be obtained by this sort of semidefinite relaxation, answering an open
question posed in [Bei10].

The capacity of quantum channels has also been widely studied. Quantum channels take as input
quantum states (such as photons) and produce quantum states as output. An example of such a
channel is a fiber optic cable that maintains the polarization of light. In 2010, Duan, Severini, and
Winter showed that a generalization of the Lovász number provides an upper bound on the zero-error
entanglement assisted asymptotic capacity of quantum channels [DSW10,DSW13]. Whereas classical
channels are analyzed using graphs, quantum channels are analyzed using what they termed non-
commutative graphs, which take the form of operator subspaces. These authors concluded their paper
with the suggestion that it may be possible to develop a richer theory of non-commutative graphs.

In chapter 5 I define and investigate a fully quantum version of zero-error source-channel coding,
and use this to further develop the theory of non-commutative graphs. Specifically, I consider a
source which produces quantum states, possibly entangled, with the sender being in possession of one
subsystem of the state and the receiver being in possession of the other. The sender makes use of a
(possibly noisy) classical or quantum channel to send a message that allows the receiver to decode
the original state. In addition to being an interesting quantum information problem in its own right,
general enough to include for example teleportation and dense coding, this has provided a path
towards further investigation of the theory of non-commutative graphs, a mathematically interesting
topic which has not otherwise progressed since its introduction in 2010 [DSW10].

1.3 Mathematics and physics background

This section contains a brief overview of the math and physics background relevant to this dissertation.
Many of these topics are covered in more detail in [NC00,Wil13].

1.3.1 Linear algebra terminology

Vector spaces will generally be denoted by upper case letters, although in chapter 2 we will use, e.g.,
HA. Unless otherwise noted, vector spaces will be finite dimensional complex Hilbert spaces. The
space of linear operators (matrices) on space A will be denoted L(A). The adjoint (i.e. conjugate
transpose) of an operator M is written M†. An operator U ∈ L(A) is unitary if U†U = I. An
operator J : A→ B is an isometry if J†J = I. An operator M is Hermitian if M = M†. An operator
M is positive semidefinite (PSD) if 〈ψ|M |ψ〉 ≥ 0 for all vectors |ψ〉. Such operators are necessarily
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Hermitian. An operator M is positive definite if 〈ψ|M |ψ〉 > 0 for all |ψ〉 6= 0, equivalently if it is
PSD and full rank. We write L �M if L−M is PSD and L �M if L−M is positive definite.

The dimension of a vector space A is denoted dim(A). For each vector space, we will single out
a particular basis and call it the standard basis. The standard basis vectors for space A will be
written |0〉A , . . . , |dim(A)− 1〉A or, sometimes, |1〉A , . . . , |dim(A)〉A when this is more convenient.
The subscript A will be left off when the space can be inferred from context. All matrices will be
expressed in terms of this basis, and we will write for example Mij = 〈i|M |j〉.

1.3.2 Qubits and qudits

The simplest quantum system possible is one with two orthogonal states, which in the quantum
information community is known as a qubit. For example, these two states could be the up or down
spins of an electron or the horizontal or vertical polarizations of a photon. Mathematically, such a
system is described by a two dimensional normalized complex vector |ψ〉 ∈ C2. This can be written
|ψ〉 = α |0〉+ β |1〉 where |0〉 and |1〉 are orthonormal basis states (corresponding to e.g. spin up or
down). Since the state is normalized, |α|2 + |β|2 = 1.

The term qudit refers to a quantum system with d orthogonal states, for some d ≥ 2. We will only
consider finite dimensional systems. For example, an atom that may be in d different Rydberg states
is a qudit, as is a particle that can be in d different spacial positions. In all cases, these systems are
allowed to be in a superposition of these basis states, so the state can be any vector in Cd.

In this dissertation we will not have occasion to consider the physical realizations of qubits or
qudits. Instead we deal with these as abstract concepts.

1.3.3 Tensor product

Multiple subsystems (qubits or qudits) exist within a vector space (a Hilbert space) that is a tensor
product of the spaces associated with each subsystem. For example, if one qudit is in state |ψ〉 ∈ Cd1
and another is in state |φ〉 ∈ Cd2 then the joint system is in state |ψ〉 ⊗ |φ〉 ∈ Cd1d2 . States of the
form |ψ〉 ⊗ |φ〉 are product states and those not of this form are entangled. We will explore this
further in section 1.3.7. The standard basis for a tensor product space A⊗B consists of the vectors
{|i〉 ⊗ |j〉}ij where {|i〉}i is the standard basis of A and {|j〉}j is the standard basis of B.

Since the joint state of two qubits exists within a four dimensional space, it is possible to consider
the pair as a ququart (qudit with d = 4). Likewise, ten qubits can be considered as a qudit with
d = 210. The joint state of a hundred qubits is a vector of such high dimension that storing the
coefficients of such a vector on a computer would not be possible. For this reason naïve simulation of
quantum systems on a classical computer is not possible for more than a handful of qubits, although
in some situations special tricks are available to simulate such systems. Such a technique will be
investigated in chapter 3.

1.3.4 Unitary operations

The Schrödinger equation produces a unitary time evolution in a closed system. Quantum computing
is founded on the assumption that one day it will be feasible to perform arbitrary unitary operations
on any qubit or pair of qubits (or even qudits), with a very high degree of accuracy. This will likely
require a very complicated process involving several layers of error correction, but this is outside the
scope of this dissertation.

Consider three qubits, on vector spaces A, B, and C. Their joint state will be some |ψ〉 ∈ A⊗B⊗C.
A unitary UA acting on only the first of these will have action (UA ⊗ IB ⊗ IC) |ψ〉 on the joint state,
where IB is the identity matrix on space B (and similarly for IC). A unitary UAB acting jointly on
qubits A and B will have action (UAB ⊗ IC) |ψ〉.
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Arbitrary unitaries acting on an arbitrary number of qubits can always be composed from a
sequence of unitaries acting on one or two qubits. It may be that this sequence of operations is
extremely long. Sometimes we will be concerned only with whether a certain task is possible, not
with the level of difficulty. In these cases the assumption is that any arbitrary unitary operation on
any arbitrary number of qubits is possible.

1.3.5 Measurements
The most basic type of measurement is the projective measurement. The outcomes are labeled
by projectors that sum to the identity,

∑
x Px = I. Such a collection is known as a projective

decomposition of the identity. When a state |ψ〉 is measured, outcome x will occur with probability
px = 〈ψ|Px|ψ〉 (the Born rule). Since

∑
x Px = I, these probabilities add up to 1.

Typically, one assumes that the particles being measured are consumed by the measuring device.
One may also consider a non-destructive measurement in which the particles being measured are not
consumed. In general, it is not possible to perform a measurement without disturbing a system. If
the outcome of a non-destructive measurement is x, the system will be left in the state Px |ψ〉 /px
where again px = 〈ψ|Px|ψ〉.

A more general form of (destructive) measurement is the positive-operator valued measurement
(POVM). Here, the outcomes are labeled by positive semidefinite (PSD) operators that sum to the
identity,

∑
xMx = I. Again, outcome x occurs with probability 〈ψ|Mx|ψ〉. Physically, a POVM

can be achieved by introducing some number of ancillary qubits all in the |0〉 state, and doing a
projective measurement on the joint system.

1.3.6 Density operators
So far we have been discussing what are known as pure states, which can be thought of as states of
maximal knowledge. But suppose we only know that a system was in state |ψ〉 with probability pψ
or state |φ〉 with probability pφ. This is known as a mixed state. Consider a POVM measurement
{Mx}x. If the system is in state |ψ〉 then outcome x occurs with probability 〈ψ|Mx|ψ〉. Given that
we don’t know what state the system is in, we can only say that outcome x occurs with probability

pψ 〈ψ|Mx|ψ〉+ pφ 〈φ|Mx|φ〉 . (1.1)

There is a more succinct way to write this. Defining ρ = pψ|ψ〉 〈ψ|+ pφ|φ〉 〈φ|, we may write (1.1) as
Tr{Mxρ}. Note that ρ is an operator (a matrix). So if |ψ〉 ∈ A then ρ ∈ L(A) where L(A) is the set
of linear operators on Hilbert space A.

The quantity ρ is known as a density operator. Density operators are always PSD and have
trace 1. Conversely, any PSD operator with trace 1 is a density operator. In other words, if ρ � 0
and Tr(ρ) = 1 there is some probability distribution {pi} and some collection of states {|ψi〉} such
that ρ =

∑
i pi|ψi〉 〈ψi|. This is just an eigenvector decomposition. If some of the eigenvalues are

degenerate (i.e. pi = pj) then this decomposition is not unique. For instance, the qubit density
operator ρ = I/2 could correspond either to an even (50% of each) mixture of |0〉 and |1〉 states or to
a mixture of |+〉 = 2−1/2(|0〉+ |1〉) and |−〉 = 2−1/2(|0〉 − |1〉) states. There is no way to distinguish
between the two cases; the density operator ρ represents all of the physically available information
about a system.

Suppose that given a joint system in state ρ ∈ L(A)⊗L(B) we measure only subsystem A, using
a POVM {Mx}x ⊂ L(A). Outcome x will occur with probability

px = Tr{(Mx ⊗ IB)ρ}. (1.2)

In the process of the measurement, subsystem A is consumed. Conditioned on outcome x, subsystem
B will remain in the conditional state

ρx = TrA{(Mx ⊗ IB)ρ}/px (1.3)

8



where TrA denotes partial trace over space A.1

Suppose we forget which outcome x occurred. We will only know that we have state ρx with
probability x. In other words, we will be left with state ρ′ =

∑
x pxρx. Plugging in (1.3) yields

ρ′ = TrA(ρ). Notice this does not depend on the choice of measurement {Mx}x. Measuring a
subsystem and forgetting the outcome is equivalent to just discarding that subsystem. The operation
TrA(ρ) is referred to as tracing out A, with the physical interpretation being that subsystem A has
been discarded or is somehow no longer available. For example, suppose Alice is in possession of
subsystem A and Bob is in possession of subsystem B, with joint state ρ. From Alice’s perspective,
she has access to state ρA = TrB(ρ). The state ρA contains all of the information needed to compute
the outcome probabilities for any measurement that Alice could do without Bob’s cooperation.

Any density operator can be purified. That is to say, if ρ ∈ L(A) is a density operator then there
is some space B, whose dimension is at most that of A, and a pure state |ψ〉 ∈ A ⊗ B, such that
ρ = TrB{|ψ〉 〈ψ|}. The purification is unique up to the application of an arbitrary unitary operator
on system B. In other words, |ψ′〉 is a purification of ρ if and only if there is a unitary U ∈ L(B)
such that |ψ′〉 = (I ⊗ U) |ψ〉.

Density operators can be considered as a quantum generalization of classical probability distri-
butions. Specifically, restricting to density operators that are diagonal matrices exactly recovers
classical probability theory, with the numbers down the diagonal corresponding to the probabilities.
For example, suppose ρ ∈ L(A) ⊗ L(B) is given by ρ =

∑
ij pij |i〉 〈i| ⊗ |j〉 〈j|. Then pij is a joint

probability distribution since pij ≥ 0 and
∑
ij pij = Tr(ρ) = 1. Discarding the first subsystem yields

the reduced distribution
∑
i pij , corresponding to the diagonal entries of TrA(ρ). Measuring the

state of the first subsystem corresponds to measurement Mi = |i〉 〈i| where |i〉 are the basis states.
Then (1.2) gives pi =

∑
j pij , and (1.3) gives the post-measurement state pj|i = pij/pi, just as in

classical probability theory.

1.3.7 Entanglement, Schmidt rank, and separable states

As mentioned previously, a pure state of the form |ψ〉 ⊗ |φ〉 is known as a product state, and states
on two subsystems that are not of this form are entangled. Entangled states are in some situations
considered a valuable resource, since they may be difficult to create and may grant important abilities.
For example, Alice and Bob cannot create an entangled state if their only contact is through a
classical channel (e.g. a telephone). On the other hand, if they are already in possession of an
entangled state then Alice can transmit quantum states to Bob using only a classical channel. This
is known as teleportation, and will be discussed in section 1.3.13.

Any pure state on two subsystems, |ψ〉 ∈ A⊗B, can be written as a linear combination of product
states,

|ψ〉 =
∑

i

si |ui〉 ⊗ |vi〉 . (1.4)

Furthermore, there exists such a decomposition where si > 0, the |ui〉 are orthonormal vectors on
A, and the |vi〉 are orthonormal vectors on B. This is known as a Schmidt decomposition. The
Schmidt coefficients si satisfy

∑
i s

2
i = 1. The number of Schmidt coefficients is the Schmidt rank of

|ψ〉. Entangled states are those with Schmidt rank at least 2. States whose Schmidt rank r satisfies
r = dim(A) = dim(B) and whose Schmidt coefficients are all equal are maximally entangled. Note
that this requires si =

√
r. The Schmidt decomposition for bipartite states is analogous to the

singular value decomposition for operators.
The amount of entanglement for a pure state can be quantified in terms of the Von Neumann

1 The partial trace of a product operator σ ⊗ χ ∈ L(A)⊗ L(B) is defined as TrA(σ ⊗ χ) = Tr(σ)χ. The definition
is extended to general operators by linearity.
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entropy of the reduced density operator,

S(TrB(|ψ〉 〈ψ|)) = −
∑

i

si log si. (1.5)

Here, and throughout this dissertation, logarithms are taken base 2. A maximally entangled state of
dimension r has log r bits of Von Neumann entropy (termed ebits).

The theory of entanglement for mixed states is more complicated, but we will only be concerned
with three classes of states. We focus on two subsystems, although the multipartite generalization is
straightforward. The product states are those of the form ρ⊗ σ. The separable states are those of
the form

∑
i ρi ⊗ σi where ρi � 0 and σi � 0 for all i. The set of all separable states is known as

SEP. (Later we will discuss separable operations, also referred to as SEP. This notational ambiguity
is resolved by considering the context.) It is computationally difficult to determine whether a mixed
state is separable. The entangled states are those that are not separable.

Among the states whose density operators are diagonal in the standard basis, the product states
correspond to uncorrelated classical probability distributions and the non-product separable states
correspond to correlated probability distributions. There are no entangled states whose density
operators are diagonal, so entanglement is a purely quantum phenomenon.

1.3.8 Classical channels

A discrete memoryless channel (which we will abbreviate as just channel, or classical channel),
denoted E : A → B where A and B are finite sets, takes input a ∈ A and produces output b ∈ B
with conditional probability E(b|a). This is to be thought of as a formalization of the concept of a
communication channel such as a copper telephone line, although realistically such a channel can be
considered discrete and memoryless only in an approximate sense.

For a given channel, one may define the matrix with entries Eba = E(b|a). Since E(b|a) is a
conditional probability distribution, E is a stochastic matrix—it consists of nonnegative entries and
each column sums to 1. Composition of channels corresponds to multiplication of these matrices:

(F ◦ E)(c|a) =
∑

b

F(c|b)E(b|a) = (FE)ca. (1.6)

The perfect channel or identity channel is I(b|a) = δba. Here δ is the Kronecker delta which takes
value 1 when b = a and zero otherwise. The corresponding stochastic matrix is the identity matrix.

1.3.9 Superoperators and quantum channels

Since a unitary operator acts on a pure state by the action |ψ〉 → U |ψ〉, it acts on a density operator
by ρ → UρU†. More general transformations are possible by introducing ancillary qubits (that
are uncorrelated with the input), doing a unitary transformation, and then discarding a (possibly
different) set of ancillaries. Such an operation is known as a discrete memoryless quantum channel,
and may map density operators on one space, say L(A), to another space, say L(B). Since all
channels considered in this dissertation will be discrete and memoryless, these will simply be called
quantum channels, or even just channels.

If E : L(A)→ L(B) is a quantum channel then there is an ancillary space C of dimension at most
dim(A) dim(B) and an isometry J : A→ B ⊗ C, known as a Stinespring isometry, such that

E(ρ) = TrC{JρJ†}. (1.7)

The Stinespring isometry is not unique, although any two such isometries are related by a unitary
transform on the ancillary space (as long as they both use the same dimension of ancillary).
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It is useful to consider the Kraus operators Ki : A → B defined by Ki = (IB ⊗ 〈i|C)J for
i ∈ {1, . . . ,dim(C)}. Note that since the Stinespring isometry is not unique, neither are the Kraus
operators. With these, (1.7) can be written

E(ρ) =
∑

i

KiρK
†
i (1.8)

Because J is an isometry, the Kraus operators satisfy the closure condition
∑

i

K†iKi = I. (1.9)

In general, a linear transformation on the space of operators, E : L(A)→ L(B), is known as a
superoperator. The tensor product of two superoperators has the action (E ⊗F)(ρ⊗σ) = E(ρ)⊗F(σ);
this is extended by linearity to non-product states. In particular, we will have occasion to consider
the tensor product of E with the identity channel, (E ⊗ I)(ρ⊗ σ) = E(ρ)⊗ σ.

A superoperator is positive if it maps PSD operators to PSD operators. It is completely positive
if it remains positive when tensored with an identity channel of arbitrary dimension, i.e. E ⊗ I
is positive. By Choi’s theorem on completely positive maps, completely positive superoperators
correspond exactly to those of the form (1.8). A superoperator is trace preserving if Tr{E(ρ)} = Tr(ρ)
for all ρ. The set of superoperators that are both completely positive and trace preserving (CPTP)
corresponds exactly to the set of quantum channels. In other words, a superoperator is CPTP if and
only if it is of the form (1.7) or, equivalently, of the form (1.8)-(1.9).

Again it is useful to relate to the classical case. Recall that density operators which are diagonal
in the standard basis correspond to classical probability distributions. Let E be a quantum channel
that maps diagonal matrices to diagonal matrices. The diagonal entries of a density matrix ρ, written
diag(ρ), may be regarded as a vector (and interpreted as a probability distribution). The superoperator
E may then be regarded as an operator E acting on such vectors, E diag(ρ) = diag(E(ρ)). This
operator is a stochastic matrix: since E is positive, E has non-negative entries, and since E is trace
preserving, the columns of E each sum to 1. So the classical analogue of a CPTP map is a classical
noisy channel.

Three special channels deserve mention. The perfect quantum channel is just the identity map:
E(ρ) = ρ. The perfect classical channel preserves the diagonal entries of its input (in the standard
basis) but zeros out the off diagonal entries. The Kraus operators for this channel are Ki = |i〉 〈i|;
the Stinespring isometry is J =

∑
i(|i〉 ⊗ |i〉) 〈i|. The completely noisy channel passes no information

about its input: E(ρ) = |0〉 〈0|. The Kraus operators are Ki = |0〉 〈i|.
Every channel E : L(A)→ L(B) has an associated complementary channel Ê : L(A)→ L(C). Let

J : A → B ⊗ C be a Stinespring isometry for E , so that E(ρ) = TrC{JρJ†}. The complementary
channel is Ê(ρ) = TrB{JρJ†}. In other words, the roles of B and C are switched. Since the
Stinespring isometry is not unique, neither is the complementary channel; one may vary the output
C by an arbitrary unitary. One may think of B as the receiver and C as the environment, so that Ê
is in some sense the channel to the environment. The complementary channel of Ê is E , modulo a
unitary on B.

For example, the complement of the perfect quantum channel is the completely noisy channel
and the complement of the completely noisy channel is the perfect quantum channel. The perfect
classical channel is its own complement.

Every channel (indeed, every superoperator) E : L(A)→ L(B) has an adjoint Ê∗ : L(B)→ L(A).
By definition, the adjoint satisfies Tr{Ê∗(ρ)†σ} = Tr{ρ†E(σ)}. If a completely positive map has Kraus
operators {Ki}, its adjoint has Kraus operators {K†i }. The adjoint of a channel is not necessarily a
channel since it might not be trace preserving.

Although the ancillary C was discarded (dumped to the environment) to arrive at (1.7), it is
sometimes useful to consider a scenario in which C is measured in the standard basis. Measurement
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outcome i will occur with probability

pi = Tr{KiρK
†
i }. (1.10)

Conditioned on outcome i, the input state ρ ∈ A will transform into the conditional density operator
ρi ∈ B of the form

ρi = KiρK
†
i /pi. (1.11)

If the outcome i is then forgotten, this reduces to (1.8).

1.3.10 Graphs

A graph G consists of a set of vertices V (G) along with a set of edges between vertices. We write
x ∼G y when there is an edge between x and y, and say that x and y are adjacent. We abbreviate
x ∼ y when the graph can be inferred from context. An edge from a vertex to itself, x ∼ x, is called
a loop. In chapter 4 only graphs without loops (simple graphs) will be considered; in chapter 5 we
will have occasion to allow loops (loop graphs).

The complement of a graph G, denoted G, has the same set of vertices but has edges between
distinct pairs of vertices which are not adjacent in G. I.e.

x ∼G y ⇐⇒ x 6∼G y and x 6= y. (1.12)

For loop graphs the complement is typically defined as x ∼G y ⇐⇒ x 6∼G y. Fortunately, in this
dissertation we will only consider the complement of loop graphs which have loops on every vertex,
and in this case the two conventions coincide.

A set of vertices no two of which are adjacent is known as an independent set ; the size of the
largest independent set is the independence number α(G). A set of vertices such that every pair
is adjacent is known as a clique; the size of the largest clique is the clique number ω(G). Clearly
ω(G) = α(G). An assignment of colors to vertices such that adjacent vertices are given distinct colors
is called a proper coloring ; the minimum number of colors needed is the chromatic number χ(G).

A function mapping the vertices of one graph to those of another, f : V (G) → V (H), is a
homomorphism if x ∼G y =⇒ f(x) ∼H f(y). In general f could map two different vertices of G
to the same vertex of H, but note that since vertices are not adjacent to themselves in a simple
graph, (1.12) gives f(x) 6= f(y) when x ∼G y. If such a function exists, we say that G is homomorphic
to H and write G→ H.

The complete graph on n vertices, denoted Kn, has an edge between every pair of vertices. It is not
hard to see that ω(G) is equal to the largest n such that Kn → G, and χ(G) is equal to the smallest
n such that G→ Kn. Many other graph properties can be expressed in terms of homomorphisms;
for details see [HT97,HN04].

The strong product of two graphs, G�H, has vertex set V (G)× V (H) and has edges

(x1, y1) ∼ (x2, y2) ⇐⇒ (x1 = x2 and y1 ∼ y2) or (1.13)
(x1 ∼ x2 and y1 = y2) or (1.14)
(x1 ∼ x2 and y1 ∼ y2). (1.15)

The n-fold strong product is written G�n := G�G� · · ·�G. The disjunctive product G ∗H has
edges

(x1, y1) ∼ (x2, y2) ⇐⇒ x1 ∼ x2 or y1 ∼ y2. (1.16)

It is easy to see that G ∗H = G�H. The n-fold disjunctive product is written G∗n := G∗G∗ . . .∗G.
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The clique number and chromatic number are difficult to compute, or even to approximate,
unless P = NP; however, there is an efficiently computable quantity that is sandwiched between
these: the Lovász ϑ number. It will be more convenient to instead work with the Lovász number
of the complement of a graph: ϑ̄(G) = ϑ(G). There are many equivalent formulations for this
quantity [Lov79,Knu94,Lov03,dCST13]; the ones most relevant to this dissertation are2

ϑ̄(G) = max{‖I + T‖ : I + T � 0, Tij = 0 for i 6∼ j} (1.17)

ϑ̄(G) = max




∑

ij

Bij : B � 0,TrB = 1, Bij = 0 for i 6∼ j, i 6= j



 (1.18)

ϑ̄(G) = min{λ : ∃Z � 0, Zii = λ− 1, Zij = −1 for i ∼ j}. (1.19)

The variables T , B, and Z are Hermitian matrices. They may be taken to be real or complex, as
this choice doesn’t affect the optimal value. It is not hard to see that ϑ̄(Kn) = n. The ϑ̄ number
is monotone under graph homomorphisms in the sense that G→ H =⇒ ϑ̄(G) ≤ ϑ̄(H) [dCST13].
Consequently, we have n = ω(G) =⇒ Kn → G =⇒ n ≤ ϑ̄(G). Similarly, n = χ(G) =⇒ G →
Kn =⇒ ϑ̄(G) ≤ n. This gives the Lovász sandwich theorem

ω(G) ≤ ϑ̄(G) ≤ χ(G). (1.20)

Two related quantities, ϑ̄′ due to Schrijver and ϑ̄+ due to Szegedy (see definition 4.5) are also
homomorphism monotones and so satisfy similar sandwich theorems. These are no greater and no
less, respectively, than ϑ̄:

ω(G) ≤ ϑ̄′(G) ≤ ϑ̄(G) ≤ ϑ̄+(G) ≤ χ(G). (1.21)

An important property of ϑ is that is is multiplicative under the strong and the disjunctive graph
products:

ϑ̄(G�H) = ϑ̄(G)ϑ̄(H) (1.22)
ϑ̄(G ∗H) = ϑ̄(G)ϑ̄(H). (1.23)

The ϑ̄+ number is not multiplicative under strong product and the ϑ̄′ number is not multiplicative
under the disjunctive product, but ϑ̄′ is multiplicative under the strong product (see appendix 4.A).

1.3.11 Zero-error classical channel capacity

Alice’s lab

Bob’s lab

x
Encode:
a = f(x)

E(b|a)

Decode:
x = g(b)

x

a

b

Figure 1.1: Zero-error channel coding.
2 The first of these follows from theorem 6 of [Lov79] by setting T = A/ |λn(A)| (note that in [Lov79] vertices are

considered adjacent to themselves). The second is theorem 4 of [Lov79]. The third comes from page 167 of [Lov03], or
from theorem 3 of [Lov79] by taking Z = λI −A with λ being the maximum eigenvalue of A.
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The capacity of a channel is the number of bits that can be sent, per channel use, in the limit
of many parallel uses of a channel. The entire collection of bits to be sent is encoded in some way,
then sent through the many parallel channels, then decoded. The capacity is taken in the limit of
infinitely many parallel channels, and the probability of faithfully recovering the original message
must approach 1. Rather than several parallel instances of a channel, one may consider a single
channel that is used many times in sequence. Indeed, this is the more applicable scenario. The
mathematical formalism is exactly the same.

The zero-error capacity of a channel is defined similarly, except that the probability of faithfully
recovering the message must be exactly 1. We distinguish between one-shot capacity, which can be
achieved with a single use of a channel, and asymptotic capacity, which is achieved in the limit of an
infinite number of parallel channels.

For classical channels, this problem was first considered by Shannon in [Sha56]. Let E : A→ B
be a noisy classical channel. Alice, who wishes to send a value x, encodes x using some encoding
scheme agreed to ahead of time, and passes the encoded value a ∈ A into the channel. Since the
channel is noisy, Bob receives some value b ∈ B which is possibly different from a. The probability of
receiving b given input a is denoted E(b|a). Bob decodes the received value b to recover the value x.
This protocol is schematically represented in fig. 1.1.

Codewords a and a′ ∈ A can be unambiguously distinguished by Bob if and only if they cannot
map to the same output value. That is to say, if E(b|a)E(b|a′) = 0 for all b ∈ B. This motivates
definition of the distinguishability graph of E , having vertex set V (G) = A and edges

a ∼ a′ ⇐⇒ E(b|a)E(b|a′) = 0 for all b ∈ B. (1.24)

Two codewords are then unambiguously distinguishable if and only if they are adjacent in this graph.
The largest set of such codewords is ω(G), so the number of bits that can be sent with a single
channel use is logω(G).

The more traditional construct is the confusability graph with edges a ∼ a′ ⇐⇒ (E(b|a)E(b|a′) 6=
0 for some b ∈ B), of which (1.24) is the complement. The distinguishability graph turns out to be
more convenient for our purposes.

It is not too hard to see that the distinguishability graph corresponding to n parallel uses of the
channel is G∗n. Briefly, two codewords (a1, . . . , an) and (a′1, . . . , a

′
n) are distinguishable when ai and

a′i are distinguishable for some i. So, the maximum number of codewords that can be sent is ω(G∗n),
corresponding to n−1 logω(G∗n) = log n

√
ω(G∗n) bits per channel use. One can now take the limit

n→∞. For convenience, the logarithm is dropped in this expression, and we define

Θ̄(G) = lim
n→∞

n
√
ω(G∗n). (1.25)

So log Θ̄(G) is the asymptotic capacity of the channel. This is the Shannon capacity of G. (Shannon
used the symbol Θ for his capacity. Since we use the distinguishability graph rather than the
confusability graph as Shannon used, it is natural to use Θ̄(G) = Θ(G).)

Shannon [Sha56] considered the example of a channel which takes as input the symbols {1, 2, 3, 4, 5}
and produces as output either a faithful rendition of the input, or a version of the input corrupted
by adding 1 modulo 5. For clarity, consider the output symbols to be primed: {1′, 2′, 3′, 4′, 5′}.
The distinguishability graph of this channel is the five cycle (pentagon) C5. For example, since
inputs 1 and 2 can both map to output 2′, they are not distinguishable and so have no edge in the
distinguishability graph. On the other hand, 1 can map to 1′ or 2′, and 3 maps to 3′ or 4′, so inputs
1 and 3 are distinguishable; there is therefore an edge between 1 and 3 in the distinguishability graph.
This is illustrated in fig. 1.2.

The one-shot capacity of this channel is ω(C5) = 2, the codewords {1, 3} being distinguishable.
For two uses of the channel we have ω(C∗25 ) = 5, the codewords {(1, 1), (2, 3), (3, 5), (4, 2), (5, 4)}
being distinguishable. Since the limit in (1.25) can easily be shown to be at least as large as its
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1 1’

2 2’

3 3’

4 4’

5 5’

1

3

52

4

Figure 1.2: The possible channel outputs for each input (left) and the distinguishability graph
(right).

argument for any particular n, it is clear that Θ̄(G) ≥
√

5. The question of equality here remained
an open question for over two decades until Lovász defined his ϑ number. Since ω(G) ≤ ϑ̄(G), we get

Θ̄(G) ≤ lim
n→∞

n

√
ϑ̄(G∗n) = lim

n→∞
n

√
ϑ̄(G)n = ϑ̄(G). (1.26)

So Θ̄(C5) ≤ ϑ̄(C5) =
√

5 [Lov79].

1.3.12 Zero-error quantum channel capacity

Again we will be concerned only with the zero-error capacity. In the case of a quantum channel
E : L(A)→ L(B), two input codewords |ψx〉 , |ψy〉 ∈ A can be unambiguously distinguished if and
only if they map to orthogonal states. Here, orthogonality is with respect to the Hilbert–Schmidt
inner product 〈X,Y 〉 = Tr(X†Y ). With Ki : A→ B being the Kraus operators for E , the condition
for distinguishability can be expanded

0 = 〈E(|ψx〉 〈ψx|), E(|ψy〉 〈ψy|)〉 (1.27)

= Tr





(∑

i

Ki|ψx〉 〈ψx|K†i
)(∑

j

Kj |ψy〉 〈ψy|K†j
)
 (1.28)

=
∑

ij

∣∣∣
〈
ψx

∣∣∣K†iKj

∣∣∣ψy
〉∣∣∣

2

. (1.29)

Since each term here is nonnegative, they all must vanish:
〈
ψx

∣∣∣K†iKj

∣∣∣ψy
〉

= 0 for all i, j. (1.30)

So the maximum set of codewords that can be unambiguously distinguished is the largest set of states
such that each pair satisfies (1.30). The one-shot zero-error capacity is the log of the size of this set.

There is a useful intuition regarding (1.30). The action E(|ψ〉 〈ψ|) =
∑
iKi|ψ〉 〈ψ|K†i can be

interpreted in the following way: the state |ψ〉 gets acted upon by some Kraus operator Ki, but we
don’t know which one. This follows from plugging ρ = |ψ〉 〈ψ| into (1.11). So the receiver knows that
codeword |ψx〉 will map to Ki |ψx〉 (disregarding normalization) for some i, and |ψy〉 will map to
Kj |ψy〉 for some j. These two sets can be distinguished if and only if all of the Ki |ψx〉 are orthogonal
to all of the Kj |ψy〉, which is just a restatement of (1.30).
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Whereas the preceding discussion was regarding the transmission of classical information (the
codewords) through a channel, we will also be interested in transmitting quantum information—qubits
rather than bits. As before, the sender encodes the state in some way before sending through the
channel. It can be shown that a qudit of dimension d (or log d qubits) can be perfectly transmitted if
and only if there is a subspace Q ⊆ A such that for all |ψ〉 , |φ〉 ∈ Q with 〈ψ|φ〉 = 0 we have

〈
ψ
∣∣∣K†iKj

∣∣∣φ
〉

= 0 for all i, j. (1.31)

This is (one form of) the Knill–Laflamme error correction condition, and follows from theorem III.2
of [KL97]. The one-shot zero-error quantum capacity is the maximum possible value of log dim(Q).

As was the case with classical channels, it is important to consider the asymptotic capacity—the
average number of bits or qubits that can be sent per channel use as the number of parallel instances of
a channel goes to infinity. With n parallel channels, the composite channel is E⊗n and the codewords
(for classical capacity) or the subspace Q (for quantum capacity) are on A⊗n.

For both classical and quantum channels, one may also consider the zero-error entanglement
assisted capacity (one-shot or asymptotic). In this scenario, sender and receiver make use of an
arbitrary entangled state which they have set up ahead of time. The math in this case is slightly
more complicated, and will be derived when the need arises in chapters 4 and 5.

1.3.13 Dense coding and teleportation
Dense coding (also known as superdense coding) is a method for Alice to convey two classical bits
(i.e. a number from 1 to 4) to Bob by transmitting one qubit. To carry out the protocol, Alice and
Bob must be in prior possession of a maximally entangled state. The protocol goes as follows: Alice
performs one of four unitaries on the qubit that makes up her half of the entangled state, and sends
the resulting qubit to Bob over a perfect quantum channel. Bob performs a joint measurement on this
qubit and on his half of the entangled state, getting one of four outcomes. This measurement outcome
tells him which of the four unitaries Alice used, thus conveying two bits of classical information. The
four unitaries must be orthogonal under the Hilbert–Schmidt inner product Tr(U†V ). The canonical
choice consists of the four Pauli matrices

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(1.32)

Teleportation is in some sense the reverse of dense coding: Alice sends one qubit to Bob by
transmitting two classical bits. Again, a maximally entangled state is consumed. The protocol goes
as follows. Alice performs a joint measurement on the qubit she wishes to send and on her half of the
entanglement resource. This measurement has four outcomes, or two classical bits. She transmits
these two bits to Bob, who then performs one of four unitary operations (typically the Pauli matrices
listed above) on his half of the entanglement resource. Bob’s half of the entanglement resource is
now in the same state as the qubit that Alice originally had. Alice’s qubit was destroyed by her
measurement.

Dense coding and teleportation are useful subroutines for communication protocols. For example,
if the entanglement assisted classical capacity (one-shot or asymptotic; zero-error or not) of a noisy
channel is 6 bits, then it must be that its entanglement assisted quantum capacity is at least 3 qubits
since teleportation can be used to send 3 qubits using 6 bits of classical communication. Conversely,
the quantum capacity cannot be more than 3 qubits since otherwise dense coding could be used to
send more than 6 classical bits.

1.3.14 LOCC and SEP
Local operations and classical communication (LOCC) is the class of quantum transformations that
can be achieved by cooperating parties who are physically separated but can communicate over a
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classical channel (e.g. a telephone).
An LOCC protocol proceeds as follows. Alice and Bob (for simplicity we assume only two parties)

each possess a subsystem of a possibly entangled input state. Alice performs a quantum operation of
the form (1.10)-(1.11) on her subsystem, resulting in a transformation of her quantum subsystem and
generation of a measurement outcome i. She transmits the classical information i to Bob. Depending
on the value i, Bob will choose some quantum operation to perform on his subsystem. Without
loss of generality this can be chosen deterministically; any random choice can be absorbed into
the quantum operation itself. This operation will result in a measurement outcome j, which Bob
transmits to Alice. Alice performs some operation depending upon the values of i and j, resulting in
a measurement outcome k which she transmits to Bob. Alice and Bob may proceed for many rounds,
adapting their strategy depending on the entire record of messages that have been passed back and
forth during prior rounds. When they are finished communicating, they may each perform some final
post-processing (by a transformation of the form (1.8)-(1.9)) on their subsystem to produce their
final output states.

Of special note is one-way LOCC (LOCC-1) in which Alice sends a message to Bob, but Bob is
not allowed to send a message to Alice. The teleportation protocol of section 1.3.13 is of this form.

The mathematical structure of LOCC is difficult to work with, is not very well understood, and
is notationally tedious. A simpler class of operations, which includes LOCC as a special case, is the
set of separable operations (SEP). The term SEP also refers to separable states, but it is possible
to determine which concept is being referred to by context. The separable operations are those of
the form (1.8)-(1.9) with the added restriction that each Ki is a product operator: Ki = Ei ⊗ Fi.
Then (1.8)-(1.9) take the form

ρ→
∑

i

(Ei ⊗ Fi)ρ(E†i ⊗ F †i ), (1.33)

∑

i

E†iEi ⊗ F †i Fi = IAB . (1.34)

Since LOCC ⊂ SEP, any necessary conditions proved for SEP also apply for LOCC. The relaxation
of LOCC to the much simpler SEP can be thought of as the quantum analogue of relaxing classical
communication protocols to what are called combinatorial rectangles.

1.3.15 Computational complexity and Bachmann–Landau notation
The amount of time an algorithm requires in order to complete some task depends upon the hardware
on which it is running: all else being equal a computer that is twice as fast will complete a task in half
the time. On the other hand, the way in which runtime scales as a function of the size of a problem
is thought to be more or less independent of the specifics of the hardware. The exception to this is
that quantum computers (if they can be built) are widely believed to be capable of solving certain
problems asymptotically faster than any classical computer. Note that in these cases, the quantum
computer will be running an algorithm quite different from that used on the classical computer. For
example, Shor’s quantum algorithm for finding the prime factors of a number runs asymptotically
faster than any known classical algorithm.

Statements regarding the way a function (runtime in this case) scales as a function of input are
made using Bachmann–Landau notation. There are three notations that we will make use of. We
will write f(n) ∈ O(g(n)) to mean that there is a k such that for sufficiently large n, f(n) ≤ k · g(n).
In other words, f(n) is asymptotically upper bounded by g(n). We will write f(n) ∈ Ω(g(n)) to
mean that there is a k such that for sufficiently large n, f(n) ≥ k · g(n). In other words, f(n) is
asymptotically lower bounded by g(n). We will write f(n) ∈ Θ(g(n)) to mean that there are k1 and
k2 such that for sufficiently large n, k1 ·g(n) ≤ f(n) ≤ k2 ·g(n). In other words, f(n) is asymptotically
bounded from above and below by g(n). We will follow the almost universally used abuse of notation
by writing, for example, f(n) = O(g(n)) instead of f(n) ∈ O(g(n)). The notation poly(n) means a
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polynomial in the variable n. So, for instance, f(n) = O(poly(n)) means that f(n) is asymptotically
bounded from above by some polynomial in n.

For example, a problem of size n is said to be solvable in O(n2) time if there is some algorithm
that runs in time at most kn2 for some k (and for all sufficiently large n). The specifics of the
hardware do not matter, since the constant factor k absorbs any speed advantage a fast computer
would have compared to a slow computer. A problem is said to require Ω(

√
n) memory if any possible

algorithm would require at least k
√
n bytes of memory, for some k.

In general, it is very difficult to prove that a classical (or quantum) computer cannot solve a
problem in a certain amount of time. In fact, it is not even known whether there is any problem that
a quantum computer can solve in polynomial time, O(poly(n)), that a classical computer cannot
solve in polynomial time. This is widely believed to be the case, as Shor’s algorithm can efficiently
factor numbers on a quantum computer and this is thought to be very time consuming on a classical
computer. But so far there is no proof, and solving this requires proving P 6= PSPACE, a well known
and extremely difficult open problem in computer science.

This difficulty can be overcome by introducing an oracle, which can be thought of as a box that
computes, in unit time, some unknown function. The box cannot be opened, rather it can only be
queried. One then asks questions such as how many oracle queries are needed in order to determine
whether there is a value x for which some function f gives f(x) = 1 when the only access to f is
through the oracle which, when queried with x, reveals the value f(x). This particular problem is
known as unstructured search. One is not given any other information about f , in particular one does
not have access to a description of a circuit which implements f . A query to the oracle is considered
to only take unit time. Quantum circuits are granted access to the oracle in the form of a unitary
operator; in particular the quantum version of an oracle can perform queries on superposition states.
This will be explained in further detail in section 3.5.3. Techniques do exist to show that quantum
computers are asymptotically faster than classical computers relative to an oracle. For example, the
unstructured search problem on a domain of size N can be solved by a quantum computer using
only O(

√
N) queries whereas any classical algorithm would require Ω(N) queries. For certain other

problems, quantum algorithms are known that exhibit exponential speedup as compared to any
possible classical algorithm, relative to an oracle [Sim94].

1.3.16 Conic and semidefinite programming
A closed convex cone K is a closed subset of some vector space such that for x,y ∈ K and λ ≥ 0 we
have λx ∈ K and x+ y ∈ K. The dual cone is

K∗ = {y : 〈y,x〉 ≥ 0 for all x ∈ K}. (1.35)

The notation 〈y,x〉 denotes inner product. This is again a closed convex cone. The dual of K∗ is K.
Conic programming involves optimization of a linear functional (which can always be expressed

as an inner product) over a set defined in terms of two closed convex cones K and L. Each such
problem has a dual (the original problem is called the primal). The primal and dual take the form
(section 4.7 of [GM12])

(Primal) max{〈c,x〉 : b−Ax ∈ L,x ∈ K} (1.36)

(Dual) min{〈b,y〉 : ATy − c ∈ K∗,y ∈ L∗} (1.37)

where K and L are closed convex cones, x and y are the vectors being optimized over, A is a matrix,
and b and c are constant vectors. All of these quantities are real. Under rather general conditions
(see [GM12] for details), the primal and dual will take the same value; this is called strong duality. A
wide range of problems can be adapted to fit the above form. For instance, if one has more than one
variable, say x1 ∈ K1 and x2 ∈ K2, then one can define x = x1 ⊕ x2 and K = K1 ⊕K2 to put the
problem in the form (1.36), where ⊕ is the direct sum.
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Although the above formulation describes optimization with vector variables, it is in fact also
possible to use matrix variables. For instance, the set of 2-by-2 Hermitian matrices can be thought
of as a four dimensional vector space over R with basis (1.32). In fact, a similar statement holds
for Hermitian matrices of arbitrary dimension. Among Hermitian matrices of a given dimension,
the set of positive semidefinite matrices forms a cone. Given superoperators Φ1 and Φ2 which map
Hermitian matrices to Hermitian matrices, and given Hermitian matrices A, B1, and B2, it is possible
to derive from (1.36)-(1.37) the following forms: [Wat11]

(Primal) max{〈A,X〉 : Φ1(X) = B1,Φ2(X) � B2, X � 0} (1.38)
(Dual) min{〈B1, Y1〉+ 〈B2, Y2〉 : Φ∗1(Y1) + Φ∗2(Y2) � A, Y2 � 0}. (1.39)

The variables being optimized over, X, Y1, and Y2, are all Hermitian. Such programs are known as
semidefinite programs. Again, under rather general conditions these two forms will take the same
value. To quote [Wat11], if one does not try to make strong duality fail, it will probably hold.

Semidefinite programs can typically be efficiently solved numerically, both in theory and in
practice. Often, a problem which cannot be solved efficiently can in fact be efficiently approximated
via a semidefinite relaxation in which discrete (often binary) variables are allowed to take vector
values. This is called a relaxation because some of the constraints (that the variables be discrete) are
relaxed.

As an example consider the clique number of a graph, ω(G). Computing this quantity requires
solving an NP-complete problem, but it admits the following semidefinite relaxation. Consider a
clique of G of size t, and let χi be the normalized indicator function for this clique (i.e. χi = 1/

√
t if

i ∈ G is part of the clique and χi = 0 otherwise). Define the matrix with entries

Bij = χiχj . (1.40)

Since vertices in a clique must be adjacent by definition, whenever i 6∼ j, i 6= j it cannot be that both
χi = 1 and χj = 1; therefore Bij = 0. Also we have TrB = t and

∑
ij Bij = t2.

We can now formulate ω(G) as an optimization problem. The domain will consist of all possible
assignments of 0 or 1 to each χi. It is not hard to see that

max

{∑
ij Bij

TrB
: Bij = χiχj , χi ∈ {0, 1}, (Bij = 0 whenever i 6∼ j, i 6= j)

}
(1.41)

is equal to ω(G). In fact, the χi that achieves the maximum in (1.41) will be the indicator function
for the maximum clique. But such an optimization cannot be computed efficiently.

Now relax the problem by allowing each χi to be an arbitrary vector, in some arbitrary Hilbert
space. The matrix Bij = 〈χi, χj〉, being a Gram matrix, is positive semidefinite (conversely, if B � 0
then it is a Gram matrix). With this relaxation, the integer program (1.41) becomes the semidefinite
program

max

{∑
ij Bij

TrB
: B � 0, Bij = 0 whenever i 6∼ j, i 6= j

}
. (1.42)

Because the maximization (1.42) has more relaxed constraints than (1.41), it will achieve at least
as large a value; in other words, it will be an upper bound on ω(G). Since the constraints and
the objective value aren’t affected by rescaling of B, we might as well add the constraint TrB = 1.
Then (1.42) is seen to be equivalent to (1.18), the Lovász ϑ̄ number of G. The dual of this semidefinite
program is (1.19).

Although the prior example involved relaxing binary variables by letting them take on vector
values, there are other possible relaxation techniques. For example, one could relax an optimization
over matrices by considering these matrices to be vectors and forgetting any of their matrix properties
(such as semidefiniteness). We will consider such a relaxation in chapter 4.
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1.4 Overview of dissertation chapters

Each chapter of this dissertation consists of a self contained paper that has been either published or
submitted for publication to a peer reviewed journal. I was the sole author on two of these papers
and the other two were collaborations, as described below. In this section I summarize the contents
and discuss the relevance of each paper to the field of quantum information.

1.4.1 Chapter 2: Entanglement requirements for implementing bipartite
unitary operations

This was a collaboration with Robert B. Griffiths and has been published in Physical Review A [SG11].
Suppose Alice and Bob each possess some quantum subsystem and they wish to collaborate to

perform some unitary operation on the joint system (a bipartite unitary). They can communicate
over a perfect channel (e.g. telephone), but are not able to communicate over any quantum channel.
In other words, we are considering LOCC (see section 1.3.14).

For a nontrivial unitary (specifically, one that is not a product operator) this task cannot be
completed unless Alice and Bob possess an entangled state. The question we investigate is how much
entanglement is required. One might expect that if the unitary were very close to the identity then
not much entanglement would be needed, since the operation is acting only very weakly. This is not
the case: it had recently been shown [STM11a] that a certain class of unitaries (the controlled-unitary
operations) acting on two qubits always require a maximally entangled state.

We found a much simpler proof that applies to arbitrary unitary operations on an arbitrary
number of qubits or qudits. Specifically, we showed if the entanglement is of minimum feasible
Schmidt rank then it must be maximally entangled. We also showed, by numerical search, that if a
larger Schmidt rank is used then less entanglement suffices. In fact, in some cases it is even possible
to use less than one bit of entanglement (in terms of Von Neumann entropy). This demonstrates
an interesting tradeoff between two measures of entanglement: for this task minimal Schmidt rank
requires maximal entropy, but larger Schmidt rank allows smaller entropy.

My contribution to this paper consisted of the main proof. Robert Griffiths worked with me to
simplify the proof, and wrote the section on map-state duality.

1.4.2 Chapter 3: Quantum interference as a resource for quantum
speedup

This work has been published in Physical Review A [Sta14a].
For certain problems there are quantum algorithms that run much faster than any known classical

algorithm. Shor’s algorithm for factoring numbers and Grover’s algorithm for unstructured search
are two notable examples. Other than a few ad-hoc explanations in reference to particular algorithms
it is not really clear, in an intuitive sense, what makes quantum computers faster. The source of the
“quantum speedup” is still not well understood.

One approach is to investigate necessary resources. In other words, which features unique to
quantum mechanics, when disallowed, remove the quantum speedup? Previous work has focused on
various measures of entanglement or various restrictions on the classes of gates used.

I considered quantum interference as a necessary resource. More precisely, I defined a measure
of interference and considered the amount of interference each operation was capable of producing,
a quantity I termed interference producing capacity. If the product of the interference producing
capacities for all operations in a quantum circuit is small then there can be no quantum speedup, since
such circuits can then be efficiently simulated by a classical computer. It remains an open question
whether interference itself, rather than interference producing capacity, is a necessary resource.
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1.4.3 Chapter 4: Bounds on Entanglement Assisted Source-channel Cod-
ing via the Lovász ϑ Number and its Variants

This was a collaboration with Toby Cubitt, Laura Mančinska, David Roberson, Simone Severini,
and Andreas Winter. This work was posted on arXiv [CMR+13] and has been submitted to IEEE
Transactions on Information Theory. It was presented at the Theory of Quantum Computation,
Communication & Cryptography 2014 conference.

We investigate zero-error source-channel coding, assisted by an entanglement resource. In this
scenario, Alice wishes to send a message to Bob using a noisy channel, making use of the fact that Bob
already has some side information regarding Alice’s message. Bob must be able to determine Alice’s
message with zero chance of error. The message and the channel are both classical; the only quantum
aspect is that Alice and Bob possess an entangled state which can be used to their advantage. This
is an interesting problem to investigate because it is a case where quantum entanglement provides an
advantage for an otherwise purely classical task.

It was known that three graph invariants, the Lovász ϑ, Schrijver ϑ′, and Szegedy ϑ+ num-
bers, provide necessary conditions for source-channel coding in the absence of entanglement assis-
tance [NTR06,dCST13]. Beigi showed the Lovász number provides a necessary condition when there
is entanglement assistance but no side information. He did this by defining a quantity β which is an
upper bound on one-shot entanglement assisted capacity and which is no greater than bϑc. Beigi
posed as an open question whether β = bϑc [Bei10]. This open question is significant because it
determines whether β could be a useful quantity for finding a gap between ϑ and the asymptotic
entanglement assisted capacity. Recently the Szegedy number was found to provide a necessary
condition for entanglement assisted source coding with a perfect (i.e. not noisy) channel [BBL+13].

We unified and strengthened all these results by showing all three of the Lovász, Schrijver, and
Szegedy numbers provide necessary conditions for the entanglement assisted source-channel coding
problem. This was accomplished via two related semidefinite relaxations. Investigating these further,
we answer Beigi’s open question in the affirmative, β = bϑc. Another group, working independently
from and concurrently with us, investigated a similar semidefinite relaxation of the quantum chromatic
number [PT13]. The authors posed the question of whether a gap existed between the quantum
chromatic number and their relaxed quantity. We found that their math was similar to ours and
amended our paper to answer their question in the affirmative.

Laura Mančinska and David Roberson proved that ϑ̄, ϑ̄′, and ϑ̄+ are monotone under entanglement
assisted homomorphisms. Toby Cubitt, Simone Severini, and Andreas Winter proved that β = bϑc. I
grafted the Cubitt, Severini, Winter proof onto a proof from [BBL+13]. Most of the intermediate
steps canceled out and the result was a converse of the result of Mančinska and Roberson. David
Roberson and I solved (mostly simultaneously and independently) the open question from [PT13].

1.4.4 Chapter 5: Quantum source-channel coding and non-commutative
graph theory

This work was posted on arXiv [Sta14b] and has been submitted to IEEE Transactions on Information
Theory.

I define and investigate a fully quantum version of zero-error source-channel coding. Alice and Bob
receive a (possibly entangled) state from some finite collection or from some subspace known ahead of
time. Alice is to send a message through a noisy quantum channel such that Bob may reproduce the
input state, with zero chance of error. This framework encompasses, for example, teleportation, dense
coding, entanglement assisted quantum channel capacity, and one-way communication complexity of
function evaluation.

In [DSW13] zero-error quantum channel capacity was investigated in terms of non-commutative
graphs, in which operator subspaces take the place of the adjacency matrix of a graph. They
generalized the Lovász number for non-commutative graphs and showed that it bounds the asymptotic

21



entanglement assisted quantum channel capacity. I show that non-commutative graphs apply also to
the quantum source-channel coding problem. This involves generalization of graph homomorphisms to
non-commutative graphs, which I hope will pave the way toward a richer theory of non-commutative
graphs, a program listed as an open problem in [DSW13]. I show the Lovász, Schrijver, and Szegedy
numbers all provide bounds on quantum source-channel coding. The latter two quantities were
generalized to non-commutative graphs for the first time in this paper.

As an application, I construct a quantum channel whose zero-error entanglement assisted one-shot
capacity can only be achieved using a non-maximally entangled state. This is noteworthy for two
reasons. First, maximally entangled states are typically considered to be a more powerful resource
than non-maximally entangled states. This result provides a counterexample to this intuition.
Secondly, if such an example (needing a non-maximally entangled state to achieve one-shot capacity)
were to be found for a classical rather than a quantum channel, this would solve the open problem
of whether the one-shot entanglement assisted capacity for classical channels is always equal to the
quantum clique number of their distinguishability graphs. The quantum clique number is defined in
a similar way as the quantum chromatic number of section 1.2.3.
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Chapter 2

Entanglement requirements for
implementing bipartite unitary
operations1

1 This work was published in: Dan Stahlke and Robert B. Griffiths, Entanglement requirements for implementing
bipartite unitary operations, Phys. Rev. A 84, 032316 (2011).
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2.1 Abstract

We prove, using a new method based on map-state duality, lower bounds on entanglement resources
needed to deterministically implement a bipartite unitary using separable (SEP) operations, which
include LOCC (local operations and classical communication) as a particular case. It is known that
the Schmidt rank of an entangled pure state resource cannot be less than the Schmidt rank of the
unitary. We prove that if these ranks are equal the resource must be uniformly (maximally) entangled:
equal nonzero Schmidt coefficients. Higher rank resources can have less entanglement: we have found
numerical examples of Schmidt rank 2 unitaries which can be deterministically implemented, by either
SEP or LOCC, using an entangled resource of two qutrits with less than one ebit of entanglement.

2.2 Introduction

It is possible to carry out nonlocal quantum operations on multipartite systems using only local
quantum operations and classical communications (LOCC) provided that the parties involved have
access to a suitable entangled state, referred to as a resource. Given a large enough resource it is
always possible to use teleportation to send all inputs to one party, who performs the operation
and then distributes the results to the other parties using teleportation. In some cases it is possible
to perform a nonlocal operation with less entanglement than is required by teleportation [EJPP00,
RAG02,YGC10,Coh10,GYC10,ZW08]. The question then arises as to how much entanglement is
really necessary in order to implement a given nonlocal operation.

Our first result, that the Schmidt rank of the resource must be at least as great as that of
the unitary [Theorem 1(a)], follows rather immediately from the fact that it is a separable (SEP)
operation. This is analogous to the result given in [DVC02] in which probabilistic (i.e. SLOCC)
implementations are considered. Since SEP is contained in SLOCC, our Theorem 1(a) can be seen
as a consequence of the result in [DVC02], however we provide an independent proof along the way
to our main result.

In contrast to the probabilistic case, the deterministic implementation of a unitary is only possible
if the state meets certain entanglement requirements. For one thing, the entanglement of the resource
must be at least as great as the entangling power of the unitary since entanglement cannot increase
under SEP [GG08]. It has been shown that any deterministic controlled-unitary operator on two
qubits implemented with bipartite LOCC using a resource of two entangled qubits necessarily requires
a maximally entangled resource [STM11b]. Our paper takes a different approach to the problem,
using SEP, and provides a proof applicable to general unitaries of arbitrary dimension. We show
that if the resource has Schmidt rank equal to that of the unitary, the resource must be uniformly
entangled in the sense that all its nonzero Schmidt coefficients are the same [Theorem 1(b)]. These
same restrictions apply to LOCC, as it is a particular case of SEP.

It is not hard to see that if the Schmidt rank of the resource is greater than the Schmidt rank of
the unitary, then the resource need not be uniformly entangled (e.g. a larger rank resource that is
majorized by a smaller rank maximally entangled state). We have found that it is in fact possible
for such a larger rank resource to have less entanglement than would be required for a resource of
Schmidt rank equal to that of the unitary. We have found examples of protocols in both SEP and
LOCC which deterministically implement a controlled phase operation using less than one ebit of
entanglement. In this case the unitary has Schmidt rank two and the resource has Schmidt rank three.
Although the nonlocal unitary protocol given in [CDKL01] can with certain probability consume
less than one ebit of entanglement2, we believe that ours is the first example of carrying out such a

2 Although the protocol given in [CDKL01] is deterministic in the sense that it always succeeds in a finite number
of steps, it is probabilistic in the amount of entanglement required. For any nontrivial unitary there is a chance that
the protocol requires usage of the |ψα2 〉 state, which has one ebit of entanglement. Thus, if the protocol only has
access to a state with less than one ebit of entanglement there is a nonzero probability that the protocol cannot be
carried out successfully.
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protocol deterministically using less than one ebit of entanglement.
The remainder of this article is organized as follows. Section 2.3 sets up the problem of bipartite

deterministic implementations of unitary operators using SEP. Section 2.4 provides the requisite
background regarding map-state duality [ZB04,BZ06] and atemporal diagrams [GWYC06,Ste09,
Cvi08]. Our main result is proved in Sec. 2.5 using what we believe to be a new method based on the
use of map-state duality. In Sec. 2.6 we consider the case of a resource of larger Schmidt rank. There
is a brief conclusion in Sec. 2.7. An appendix details the implementation of a controlled unitary
using a qutrit resource state of less than one ebit of entanglement.

2.3 Nonlocal Unitaries Via Separable operations

We are interested in carrying out a bipartite unitary map U : HA ⊗ HB → HĀ ⊗ HB̄, using as
a resource an entangled state |ψ〉 on two ancillary systems Ha and Hb, by means of a separable
operation {Ek ⊗ Fk}, k = 1, 2, . . .. Here Ek : HA ⊗Ha → HĀ and Fk : HB ⊗ Hb → HB̄ together
form a product Kraus operator. For U to be unitary it is necessary that the dimensions of the
Hilbert spaces satisfy dAdB = dĀdB̄ , but we do not require that dA = dĀ or dA = dB . The separable
operation must satisfy the usual closure condition [HHHH09]

∑

k

(Ek ⊗ Fk)†(Ek ⊗ Fk) = IA ⊗ Ia ⊗ Ib ⊗ IB (2.1)

which is depicted in Fig. 2.1(a).
In addition, for |Φ〉 any pure input state on HA ⊗HB, the outcome of the operation will be a

pure state

U
(
|Φ〉 〈Φ|

)
U† =

∑

k

(
Ek ⊗ Fk

)(
|Φ〉 〈Φ| ⊗ |ψ〉 〈ψ|

)(
Ek ⊗ Fk

)†
(2.2)

on HĀ ⊗ HB̄. Since the protocol is assumed to be deterministic, every term on the right side is
proportional to the same pure state and it must be the case that

(Ek ⊗ Fk) |ψ〉 = αkU, (2.3)

with αk some complex number. Note that both sides of (2.3) are operators acting on HA ⊗ HB;
Fig. 2.2(a) will help interpreting it correctly.

The resource |ψ〉 is assumed to have a Schmidt rank of Dψ, which means it can be written in the
form

|ψ〉 =

Dψ∑

i=1

λi |ai〉 ⊗ |bi〉 . (2.4)

for suitable orthonormal bases {|ai〉} and {|bi〉} of Ha and Hb, with Schmidt coefficients λi > 0 for
i ≤ Dψ.

Similarly, the bipartite operator U is assumed to have a Schmidt rank of DU , meaning that it
can be written in the form [Tys03]

U =

DU∑

i=1

µiAi ⊗ Bi, (2.5)

where {Ai} and {Bi} are bases of the operator spaces L(HA,HĀ) and L(HB ,HB̄), orthonormal
under the Frobenius (Hilbert–Schmidt) inner product, and µi > 0 for i ≤ DU . Equivalently, DU is
the minimum number of terms needed in order to write U in the form

∑ Ci ⊗Di, without requiring
Ci or Di to be from an orthonormal basis.
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2.4 Map-State Duality and Diagrams
Map-state duality [ZB04,BZ06] plays a central role in the proof that will follow. This is a general
concept that is sometimes referred to as reshaping or a partial transpose [ZB04] and in a specific
manifestation is known as the Jamiołkowski or sometimes the Choi–Jamiołkowski isomorphism.
States and maps are considered to both be tensors, and when a choice of orthonormal basis is fixed
there is a natural linear relation between bras and kets (i.e. |i〉 ↔ 〈i| for all basis vectors |i〉)3.

With this identification between bras and kets in place, the bipartite state |ψ〉 on the Hilbert
space Ha ⊗Hb can be identified with the linear map ψ′ : Hb → Ha obtained by turning kets into
bras on the Hb space:

|ψ〉 =
∑

ij

ψij |ai〉 ⊗ |bj〉 → ψ′ =
∑

ij

ψij |ai〉 〈bj | (2.6)

Similarly, the operators U , Ek, and Fk, give rise to U ′ : HB ⊗HB̄ → HA ⊗HĀ (by turning bras into
kets on HA and kets into bras on HB̄), E′k : Ha → HA ⊗HĀ (by turning bras into kets on HA), and
F ′Tk : HB ⊗HB̄ → Hb (by turning bras into kets on Hb and kets into bras on HB̄),

U ′ =
∑

ijmn

〈
Āj , B̄n

∣∣U
∣∣Ai, Bm

〉 ∣∣Ai, Āj
〉 〈
Bm, B̄n

∣∣ ,

E′k =
∑

ijm

〈
Āj
∣∣Ek
∣∣Ai, am

〉 ∣∣Ai, Āj
〉
〈am| ,

F ′Tk =
∑

ijm

〈
B̄j
∣∣Fk
∣∣Bi, bm

〉
|bm〉

〈
Bi, B̄j

∣∣ . (2.7)

In the case of these three operators, map-map duality may be a more precise term, however we will
use map-state duality to refer to any such partial transpose. The primed operator for Fk is denoted
as F ′Tk in order to draw attention to the fact that its domain and range are swapped in comparison
to E′k.

The equations introduced so far make use of six distinct Hilbert spaces and tensors of various rank.
In such situations the underlying structure of equations can be somewhat hidden when expressed
using Dirac notation. Abstract index notation is more transparent but can become unwieldy. For
this reason we provide atemporal diagrams, similar to those found in [GWYC06], which should aid
the reader in following the arguments in the text.

Operators are designated by squares or rectangular boxes. As a matter of style, the state |ψ〉
and its corresponding operator ψ′ will be represented as a circle instead of a square. Lines between
these boxes represent tensor contraction, and these lines are labeled by the Hilbert spaces which they
correspond to. Open lines on the left of a diagram represent the input to the total linear operator
defined by the diagram, and open lines on the right represent outputs. Putting the inputs on the left
means that operators are to be applied in a left-to-right manner, opposite to how algebraic equations
are interpreted. As has been so far described, our diagrams are to be interpreted in exactly the same
way as traditional quantum circuits as used for example in Nielsen and Chuang [NC00]. The primary
difference between our diagrams and traditional circuits is that in the latter the horizontal direction
is understood to represent the passage of time whereas our diagrams make no reference to time.
The presence of a summation symbol has the obvious meaning: the linear operator depicted in the
diagram denotes the terms of a series. The trace or partial trace operation is just a special case of
tensor contraction and is denoted by joining the relevant spaces with a line. The identity operator is
represented by a line. With minor changes in style our diagrams are equivalent to the atemporal
diagrams of [GWYC06], and resemble other such schemes [Ste09,Cvi08].

3 It is also possible to formulate map-state duality in a basis independent manner [Tys03], however this is not
necessary for the present work.
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a)
∑

k

A
a

b
B

Ek

Fk

E†
k

F †
k

A
a

b
B

Ā

B̄
=

A
a

b
B

A
a

b
B

b)
∑

k α
∗
k

A
a

b
B

Ek

Fk

U †
A

B

Ā

B̄
=

A
a

b
B

A

B

ψ†

c)
∑

k α
∗
k

A
a

b
B

Ek

Fk

Ā

B̄

=

A
a

b
B

U

Ā

B̄

ψ†

d)
∑

k α
∗
k

a E′
k

A
Ā

bF ′T
k

B
B̄

=
a ψ′† b

B
B̄

U ′ A
Ā

e)
∑

k α
∗
k

â Êk Â

b̂F̂T
kB̂

=
â ψ̂† b̂

B̂ Û Â

f)
∑

k α
∗
k

â Êk Û−1 B̂

b̂F̂T
kB̂

Â

=
â ψ̂† b̂

B̂ B̂

g)

∑
k α

∗
k

â Êk Û−1

F̂T
k b̂

Â

B̂
=

â ψ̂† b̂

B̂

Figure 2.1: Atemporal diagrams, explained in Sec. 2.4. (a) Closure condition, (2.1). (b) Apply 〈ψ|
and simplify using the adjoint of Fig. 2.2(a) to get (2.9). (c) Multiply on the right by U to get (2.10).
(d) Apply map-state duality to get (2.11). (e) Restrict spaces to supports and ranges of operators to
get (2.12). (f) Multiply by Û−1. (g) Trace over HB̂ to get (2.13).

2.5 Entanglement Requirements
Our main result is the following:

Theorem 2.1. Suppose that a unitary operator U is implemented deterministically by a separable
operation that makes use of the pure state entanglement resource |ψ〉 [i.e. suppose that (2.1) and
(2.3) hold]. Then

(a) The Schmidt rank Dψ of |ψ〉 is greater than or equal to the Schmidt rank DU of U .
(b) If the Schmidt ranks are equal, DU = Dψ, then |ψ〉 must be a uniformly (maximally) entangled

state: all the nonzero Schmidt coefficients are the same.
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a) A

B

ψ

Ek

Fk

Ā

B̄

a

b = αk
A
B

U Ā
B̄

b) B
B̄

F ′T
k ψ′

E′
k

A
Ā

b

a = αk
B
B̄

U ′ A
Ā

c)
B̂ F̂T

k ψ̂

Êk Â

b̂

â
= αk B̂ Û Â

Figure 2.2: (a) Deterministic unitary operation, (2.3). (b) Apply map-state duality to get (2.8). (c)
Restrict spaces to supports and ranges of operators to get (2.14).

Proof of (a). Making use of map-state duality and the operators defined in (2.6) and (2.7), equation
(2.3) [Fig. 2.2(a)] can be rewritten as [Fig. 2.2(b)]

E′kψ
′F ′Tk = αkU

′. (2.8)

Since the rank of a product of linear operators is at most the smallest of the ranks of the individual
operators, it follows that rank(ψ′) ≥ rank(U ′). The rank of an operator is equal to the number of its
nonzero singular values. Since the Schmidt decompositions (2.4) and (2.5) are essentially singular
value decompositions of ψ′ and U ′, it is apparent that rank(ψ′) = Dψ and rank(U ′) = DU and the
inequality becomes Dψ ≥ DU . Part (a) is proved.

Proof of (b). Apply the closure condition (2.1) to 〈ψ| and use the adjoint of (2.3) to obtain
∑

k

α∗kU
†(Ek ⊗ Fk) = 〈ψ| ⊗ IAB . (2.9)

as shown in Fig. 2.1(b). Next, multiply both sides on the left by U to arrive at
∑

k

α∗k(Ek ⊗ Fk) = 〈ψ| ⊗ U, (2.10)

as shown in Fig. 2.1(c). Making use of map-state duality gives [Fig. 2.1(d)]
∑

k

α∗k(E′k ⊗ F ′Tk ) = ψ′† ⊗ U ′. (2.11)

The map U ′ may in general have rank less than the dimension of HB ⊗HB̄ or HA ⊗HĀ (which
need not be equal to each other). In this case it will be useful to denote by HB̂ the subspace of
HB ⊗HB̄ which forms the support (or co-image or row space) of U ′, the orthogonal complement of
its kernel (null space), and by HÂ the subspace of HA ⊗HĀ that forms the range (or image) of U ′.
Each of these subspaces has a dimension equal to DU , and U ′ is a nonsingular (invertible) linear map
of HB̂ onto HÂ, which we hereafter denote by Û . In the same way one can introduce subspaces Hb̂
and Hâ of Hb and Ha which form the support and range of ψ′, and define ψ̂ to be the corresponding

28



nonsingular map of rank Dψ from Hb̂ to Hâ. Next, Êk is E′k with its domain restricted to Hâ, which
can be strictly smaller than the support of E′k, and with its range restricted to HÂ, which could be
smaller than the image of E′k. Finally, F̂

T
k is F ′Tk regarded as a map from HB ⊗HB̄ to Hb, but with

domain and range restricted to HB̂ and Hb̂, respectively4.
The result of restricting (2.11) to the subspaces just defined is

∑

k

α∗k(Êk ⊗ F̂Tk ) = ψ̂† ⊗ Û , (2.12)

corresponding to Fig. 2.1(e). Multiplying on the left by Û−1 and tracing over HB̂ gives
∑

k

α∗kF̂
T
k Û
−1Êk = DU ψ̂

†, (2.13)

see Fig. 2.1(f) and (g). Restricting (2.8) to subspaces results in

Êkψ̂F̂
T
k = αkÛ , (2.14)

see Fig. 2.2(c). Here we have restricted the spaces over which matrix multiplications are being
performed (Hb̂ and Hâ instead of Hb and Ha), however equality is still maintained because the
dimensions which have been eliminated correspond to the zero Schmidt coefficients of |ψ〉, which is
to say the zero singular values of ψ′.

To complete the proof, make use of the assumption Dψ = DU . Then Dψ is also the rank of Êk
and F̂Tk : all four operators in (2.14) are full rank. Taking the inverse of both sides and inserting the
result for Û−1 in (2.13) leads to the result

∑

k

|αk|2 ψ̂−1 = ψ̂−1 = Dψψ̂
†, (2.15)

where
∑
k |αk|2 = 1 follows from (2.1), (2.3) and the normalization of |ψ〉. With |ψ〉 in Schmidt form,

ψ̂ is diagonal, so ψ̂ = I/
√
Dψ. Therefore all the nonzero Schmidt coefficients of |ψ〉 are equal to

1/
√
Dψ.

2.6 Larger Rank Resource
We have proved that a resource that is of the smallest viable Schmidt rank must be maximally
entangled, but it is also possible to use a resource that is of higher Schmidt rank that is not maximally
entangled. For one thing, if such a state meets an appropriate majorization criterion it can be
deterministically transformed into a maximally entangled state [Nie99]. In this case the larger rank
initial resource would have greater entanglement than would be required if the smaller maximally
entangled state had been used in the first place. There is however the possibility that some protocol
could be devised to use a resource of larger Schmidt rank that has less entanglement than the
maximally entangled state of smaller rank.

In fact, we have numerically found examples of such constructions in both SEP and LOCC.
One solution in SEP uses a resource state |ψ〉 =

√
0.81 |00〉+

√
0.095(|11〉+ |22〉) on two qutrits to

implement the two qubit controlled unitary operator U = diag{1, 1, 1, eiφ} with φ = 2cos−1(35/36).
We have verified this to be an exact solution using a computer algebra system. This resource
constitutes less than one ebit of entanglement: the Von Neumann entropy is approximately 0.89 ebits.

4 It is significant that we define F̂Tk as F ′Tk restricted to subspaces. In general it is not the case that F̂k is equal to
F ′k restricted to subspaces.
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Since entropy cannot increase under SEP [GG08] it is necessary for the resource that is consumed
to have greater entanglement than the entangling capacity of the unitary being implemented. The
entangling capacity of this unitary is shown in [LHL03] to be approximately 0.23 ebits. Since this is
much less than the 0.89 ebits that we use, there remains the possibility that a different construction
or an even larger rank resource could potentially lower the entanglement cost further.

We also found an LOCC protocol which, though less efficient than the SEP construction just
described, allows one to carry out a bipartite unitary deterministically using a resource with less
than one ebit of entanglement. The resource in this case is |ψ〉 =

√
0.8 |00〉+

√
0.1(|11〉+ |22〉) and

the unitary implemented is U = diag{1, 1, 1, eiφ} with φ = 0.08π. The Von Neumann entropy of this
resource is approximately 0.92 ebits, and this is a four round protocol (Alice, Bob, Alice, Bob).

The constructions described above are instances of a more general continuous family of solutions
that we have found, covering a range of controlled phase operations. As should be expected, a larger
phase φ requires a larger entanglement resource. In both the SEP and the LOCC case only certain
classes of solutions were searched for, so it is possible that a more thorough search would provide
more efficient protocols. The details of our SEP construction are presented in Appendix 2.A. Our
LOCC construction consists of a long list of Kraus operators in numerical form, which is available
upon request.

2.7 Conclusion

We have shown that a unitary operator of Schmidt rank D implemented as a bipartite separable
operation requires an entanglement resource of Schmidt rank at least D. If the Schmidt rank of the
resource is exactly equal to D, the resource must be uniformly (maximally) entangled with equal
nonzero Schmidt coefficients. These restrictions apply also to LOCC, which is a subset of SEP. The
proof uses map-state duality in a way which has not (so far as we know) been previously applied to
problems of this type, so might have other interesting applications.

Numerical results show that the amount of entanglement required for the resource can be lowered
by using a resource of Schmidt rank larger than D. A four round LOCC protocol has been found
which uses a two-qutrit resource state with less than one ebit of entanglement to implement a bipartite
controlled phase gate (albeit with a small phase).

Although some large classes of unitaries are known to have implementations in LOCC using
resources having the minimal Schmidt rank required by Theorem 1(a) [EJPP00,RAG02,YGC10,
Coh10, ZW08], it is not known whether such minimal-rank implementations are possible for all
unitaries. Given a unitary of Schmidt rank DU it is always possible to find a collection of operators
{Ek ⊗ Fk} such that (2.9) and (2.3) are satisfied with a resource of Schmidt rank Dψ = DU . But
it is not known if there is a separable operation satisfying both (2.1) and (2.3). Consequently, it is
possible that some unitaries may require a resource of greater rank than the lower bound given in
Theorem 1(a). Even if such a minimal rank solution is always possible in SEP, it still might not be
possible in LOCC. This stands in contrast to the case of SLOCC where it is known that any unitary
can be implemented using a state of Schmidt rank equal to that of the unitary [DVC02].
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2.A Less than one ebit in SEP
We performed a numerical search for solutions to (2.1) and (2.3) with the resource and unitary taking
the forms

|ψ〉 =
√
c0 |00〉+

√
(1− c0)/2(|11〉+ |22〉), (2.16)

U = diag{1, 1, 1, eiθ}. (2.17)

In this case the unitary U is Schmidt rank 2 and the resource is Schmidt rank 3, so the spaces Ha
and Hb are each 3 dimensional. In order to reduce the search space we looked for operators {Ek}
and {Fk} of the form

Ek = E∗Sk and Fk = F∗Tk (2.18)

where Sk : Ha → Hc, Tk : Hb → Hc with Hc being a two dimensional space, and

E∗ =

(
1 0
0 0

)

ĀA

⊗ 〈0|c +

(
0 0
0 1

)

ĀA

⊗ 〈1|c , (2.19)

F∗ =

(
1 0
0 1

)

B̄B

⊗ 〈0|c +

(
1 0
0 eiθ

)

B̄B

⊗ 〈1|c . (2.20)

It is possible to take advantage of the symmetry of the resource |ψ〉 by searching for operator sets of
the form

{SkLlMmNn} and {TkLlMmNn} (2.21)

where l,m, n ∈ {0, 1} and L, M , and N are defined by

L =




1 0 0
0 0 1
0 1 0


 , (2.22)

M = diag(1, 1,−1), and N = diag(1,−1, 1). There is no loss of generality in this assumption, since
if ({Sk}, {Tk}) gives a solution to (2.1) and (2.3) then so does ({ 1√

8
SkL

lMmNn}, {TkLlMmNn}).
This decreases the number of independent operators (indexed by k) that need to be solved for, and
in fact it turns out to be sufficient to consider only two values of k.

Initially we searched for solutions with θ = π/4 and c0 = 0.6 which, although representing more
than one ebit of entanglement, is not majorized by a fully entangled resource of Schmidt rank 2. Once
a solution was found, the parameters were variated until a value of c0 was reached which represented
a resource of less than one ebit of entanglement. Further constraints were added and variations made
to simplify the solution and identify relations between the parameters. A family of solutions was
found of the form (2.21) with

S0 =

(
p 1 −p

eiθ/2 −p −1

)
, (2.23)

S1 =

(
−1 1 −p

−peiθ/2 p 1

)
, (2.24)

T0 =

(
−x− y ∗ ∗

(x− y)e−iθ/2 ∗ ∗

)
, (2.25)

T1 =

(
−x+ y ∗ ∗

(x+ y)e−iθ/2 ∗ ∗

)
, (2.26)

p =

√
1− s
s

, (2.27)

s = x2 (1− cos (θ/2)) + y2 (1 + cos (θ/2)) , (2.28)
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where the parameters x, y, c0, and θ must be solved for numerically. The asterisks in T0 and T1

represent parameters that can be found using the relation Skψ′TTk = I/4.
A sequence of solutions for x, y, c0, and θ were fed into an inverse symbolic calculator of our own

design which uses a lookup table to convert floating point numbers into algebraic expressions. One
of these solutions produced particularly simple algebraic expressions:

x = 9/5, (2.29)
y = −3/5, (2.30)
c0 = 0.81, (2.31)
θ = 2arccos(35/36). (2.32)

With this algebraic solution in hand, we used the computer algebra package Sage [S+10] to verify that
this indeed represented an exact (not just approximate to within floating point precision) solution
to (2.1) and (2.3).

32



Chapter 3

Quantum interference as a resource
for quantum speedup1

1 This work was published in: Dan Stahlke, Quantum interference as a resource for quantum speedup, Phys. Rev.
A 90, 022302 (2014). The version in this thesis contains minor typesetting differences.
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3.1 Abstract
Quantum states can in a sense be thought of as generalizations of classical probability distributions,
but are more powerful than probability distributions when used for computation or communication.
Quantum speedup therefore requires some feature of quantum states that classical probability
distributions lack. One such feature is interference. We quantify interference and show that there
can be no quantum speedup due to a small number of operations incapable of generating large
amounts of interference (although large numbers of such operations can in fact lead to quantum
speedup). Low-interference operations include sparse unitaries, Grover reflections, short time/low
energy Hamiltonian evolutions, and the Haar wavelet transform. Circuits built from such operations
can be classically simulated via a Monte Carlo technique making use of a convex combination of
two Markov chains. Applications to query complexity, communication complexity, and the Wigner
representation are discussed.

3.2 Introduction
It is well known that certain quantum algorithms, such as Shor’s and Grover’s, provide a speedup
compared to classical algorithms. However, the source of such quantum speedup is still somewhat of
a mystery. Insight can be gained by determining necessary resources. Suppose that any quantum
circuit not making use of some resource X can be efficiently simulated. Being efficiently simulated,
such circuits do not exhibit quantum speedup. One can then conclude that resource X is necessary
for quantum speedup. Many such resources have been identified. For circuits on pure states there is
no quantum speedup if at all times (i.e. before and after every unitary) the state has small Schmidt
rank [Vid03] or factors into a product state on small subsystems [JL03]. For qubit circuits there
is no quantum speedup if the discord across all bipartite cuts is zero at all times [Eas10]. There
is no quantum speedup for circuits that use only Clifford gates [Got98], or matchgates [Val01],
that have small tree width [MS08,Joz06], or that use only operations having nonnegative Wigner
representation [VFGE12,VWFE13,ME12]. For a brief overview of resources identified as important
for quantum speedup see section 9 of [FRS12].

A tempting but naive explanation for quantum speedup is the exponentially large dimensionality
of Hilbert space (2n for n qubits), combined with “quantum parallelism”. Shor’s algorithm begins by
preparing a state

√
2−n

∑
x |x〉 ⊗ |f(x)〉 which can be interpreted as simultaneously evaluating f for

all 2n values of x. However, this is not a satisfactory explanation for quantum speedup since classical
probability distributions over n bits can also be considered as vectors of dimension 2n, and allow a
similar sort of parallelism. We show that the quantum speedup is connected to interference, something
which classical probability distributions lack. Prior works have mentioned interference as being
important for quantum speedup but without offering a quantitative definition [Ben95,For03,Llo99,
VdN11] or have quantified interference without providing a strong connection to speedup [BG06].

We consider quantum circuits composed of an initial state, followed by several unitary operators,
and terminated by measurement of a Hermitian observable. The expectation value of this measurement
can be written as a sum of Feynman-like paths in the computational basis, and this sum can be
estimated via a Monte Carlo technique that considers an ensemble of paths drawn according to a
suitable probability distribution. The required size of the ensemble is lower bounded by the square of
the interference, which we define as a sum of absolute values of the path amplitudes (definition 3.3).
We are not able to reach this lower bound, however by using a convex combination of a pair of
Markov chains we are able to provide a simulation algorithm that runs in time quadratic in the
product of the interference producing capacities of each operator in the circuit, defined as the largest
amount of interference an operator is capable of producing (definition 3.5). This ends up being equal
to the largest singular value of the entrywise absolute value of the operator in the computational
basis. Briefly, we can estimate expressions of the form 〈ψ|A · · ·Z|φ〉, of which quantum circuits
〈ψ|U (1)† · · ·U (T )†MU (T ) · · ·U (1)|ψ〉 are a special case, in time proportional to ‖Ā‖22 · · · ‖Z̄‖22 where
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‖·‖2 denotes maximum singular value and where a bar over an operator denotes entrywise absolute
value in the computational basis. This work was inspired by, and extends, [VdN11] which provides
an efficient simulation when A, . . . , Z are all sparse.

Operations with small interference producing capacity include the efficiently computable sparse
operations as defined in [VdN11] (e.g. permutation matrices and gates acting on a constant number
of qubits), as well as the Grover reflection operation, short time/low energy Hamiltonian evolutions,
and the Haar wavelet transform. Our simulation algorithm will generally be exponentially slow in the
length of the circuit, but for the classes of gates listed in the previous sentence has only polynomial
dependence on the number of qubits. An example of a circuit that apparently uses much “quantum
magic,” but which can nevertheless be simulated in time polynomial in the number of qubits, is
depicted in fig. 3.1.

We (of course) cannot efficiently simulate Shor’s algorithm. However, replacing the Fourier
transform by the Haar transform, which has low interference producing capacity, yields a circuit that
we can simulate (fig. 3.2). We show that there is no quantum advantage for communication protocols
that use small interference, although curiously this result does not apply to one-round communication
protocols. To our knowledge, interference producing capacity is the first continuous-valued quantity
that has been shown necessary for quantum speedup, escaping the theorem of [Nes12] which shows
that a large class of continuous-valued quantities, such as entanglement and discord, are not necessary
for quantum speedup.

In sections 3.3 and 3.4 we explain our method for estimating expectation values using a Monte
Carlo technique with Markov chains. In section 3.5 we formalize and extend this technique and
provide guarantees on runtime. In section 3.6 we characterize the types of quantum circuits that our
technique can efficiently simulate, and explore a variety of circuits that we cannot efficiently simulate.
Section 3.7 discusses further applications, including the Wigner representation and communication
complexity. In section 3.8 we formalize our conjecture that interference, rather than interference
producing capacity, is required for quantum speedup. Nontrivial proofs are deferred to appendices.

3.3 Monte Carlo technique

3.3.1 Sampling of paths

We will make use of the following circuit model. Let ρ be an initial density operator. This state
is acted upon by a sequence of unitaries U (1), . . . , U (T ). Finally, a Hermitian observable (e.g. a
projector) M is measured. It is not assumed that the unitary operations or the final observable are
local, they can be arbitrary operations potentially involving all qubits or qudits (e.g. a quantum
Fourier transform). The expectation value of this final measurement is

Tr
{
U (1)† · · ·U (T )†MU (T ) · · ·U (1)ρ

}
. (3.1)

Our goal is to estimate this expectation value to within small additive error, using a classical computer.
We allow the unitaries to be oracle operations (as in Grover’s algorithm), in which case we grant the
classical computer that runs the simulation access to an equivalent oracle (this is further discussed in
section 3.5.3).

This is not the most general type of simulation. In particular, we do not consider the case of
a many-outcome measurement (e.g. individual measurements on several qubits, or a measurement
given by a projective decomposition of the identity) in which the simulation is required to produce
individual outcomes according to the same probability distribution with which the quantum circuit
produces those outcomes. The ability to estimate the expectation value of a projector to within
small multiplicative error would allow simulation of such sampling, as discussed in [TD04], however
the algorithm of the present paper only estimates to within additive error.
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Although our primary goal is to estimate expressions of the form (3.1), we generalize the task by
considering products of the form Tr{A(1) · · ·A(S)σ} where σ and the A(s) are matrices, not necessarily
unitary or Hermitian, and possibly rectangular (we label σ separately from the A(s) in anticipation
of the results of the next section). This product can be written as a sum over paths,

Tr{A(1) · · ·A(S)σ} =
∑

i0...iS

A
(1)
i0i1
· · ·A(S)

iS−1iS
σiSi0 . (3.2)

Or, by defining the tuple index π = (i0 . . . iS), this can be written as

Tr{A(1) · · ·A(S)σ} =
∑

π

V (π) (3.3)

V (π) = A
(1)
i0i1
· · ·A(S)

iS−1iS
σiSi0 . (3.4)

Our strategy is to estimate this sum by drawing a reasonably small number of paths π according to a
probability distribution, denoted R(π). Any probability distribution can be used, although some are
more suitable than others. Finding a good R(π) will be a central goal of this section and the next.
Denote by Π a random variable that takes value π with probability R(π). Consider the expectation
value of V (Π)/R(Π).

E
[
V (Π)

R(Π)

]
=
∑

π

V (π)

R(π)
R(π) (3.5)

=
∑

π

V (π). (3.6)

By the weak law of large numbers,
∑
π V (π) can be approximated to arbitrary accuracy by

computing the mean of sufficiently many samples of V (Π)/R(Π), however the efficiency of this
strategy hinges on two things. First, it must be possible using a classical computer to efficiently draw
random samples according to the probability distribution R(π) and to compute the corresponding
values V (π)/R(π). This is an important point that we will return to throughout the paper. Second,
the sample mean of V (Π)/R(Π) must rapidly converge to its expectation value. The Chernoff–
Hoeffding bound states that for a random variable whose magnitude is bounded by b, the mean of
O(ε−2b2) samples is very likely to approximate the expectation value to within additive error ε. Thus
there is rapid convergence when maxπ{|V (π)| /R(π)} is small. Note that this is a sufficient but not
necessary condition for rapid convergence, for example considering the variance of V (Π)/R(Π) could
in some cases reveal that convergence happens more rapidly.

We now present the Chernoff–Hoeffding bound in one of its standard forms, along with a corollary
that adapts it to our application.

Theorem 3.1 (Chernoff–Hoeffding bound [Hoe63]). Let X1, . . . , XK be independent identically
distributed real-valued random variables with expectation value E [X] and satisfying |Xk| ≤ b. Let
ε > 0. Then

Pr

{∣∣∣∣∣
1

K

K∑

k=1

Xk − E [X]

∣∣∣∣∣ > ε

}
≤ 2e−Kε

2/2b2 . (3.7)

Corollary 3.2. Let V (π) be a complex valued function of π and R(π) be a probability distribution.
Define

bmax = max
π

{ |V (π)|
R(π)

}
. (3.8)

Let ε, δ > 0. Then, with probability less than δ of exceeding the error bound,
∑
π V (π) can be estimated

to within additive error ε using O(log(δ−1)ε−2b2max) draws from the distribution R(π) and the same
number of evaluations of V (π)/R(π).
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Proof. It can be shown2 that theorem 3.1 can be extended to complex variables at the expense of
replacing the right hand side of (3.7) by 4e−Kε

2/4b2 . Define the independent identically distributed
random variables Xk = V (Πk)/R(Πk) with k ∈ {1, . . . ,K}. Applying the complex valued version
of theorem 3.1, and noting that |Xk| ≤ bmax and E [V (Π)/R(Π)] =

∑
π V (π), we get

Pr

{∣∣∣∣∣
1

K

K∑

k=1

V (Πk)

R(Πk)
−
∑

π

V (π)

∣∣∣∣∣ > ε

}
≤ 4e−Kε

2/4b2max . (3.9)

Setting K = ln(4/δ)4ε−2b2max = O(log(δ−1)ε−2b2max) makes the right hand side of (3.9) equal to
δ.

Since the number of samples needed depends only logarithmically on δ, it is possible to choose δ
to be extremely small (say, one part in a billion) while having only minimal impact on the number of
samples needed. With such a small δ, the estimate will be very likely to be within additive error ε.

The number of samples needed for an accurate estimate is quadratic in bmax, so finding an R(π)
for which bmax is small is of crucial importance. However, feasibility of the simulation also depends
on the difficulty of drawing random paths π according to the distribution R(π) and computing the
corresponding values V (π)/R(π). We will denote by the letter f the time needed to carry out these
operations. Specifically, we require that sampling from R(π) and computing V (π)/R(π) can be
carried out in average time O(f) where f is some function of the dimension or number of qubits
of a quantum circuit. Since

∑
π V (π) can be estimated by averaging O(log(δ−1)ε−2b2max) samples

of V (Π)/R(Π), each of which can be computed in time O(f), the total runtime of the algorithm is
O(log(δ−1)ε−2b2maxf).

Some probability distributions are easier to sample from than others, and this needs to be decided
on a case by case basis. For example, consider R(i) = |ψi|2 where |ψ〉 is a quantum state. If |ψ〉 is
a computational basis state then R(i) is rather trivial and can be sampled by simply outputting
the sole index i for which R(i) 6= 0. If |ψ〉 is a graph state on n qubits then R(i) is the uniform
distribution over the 2n basis states. This can be sampled in time O(n) by tossing a fair coin n times,
once for each qubit, so in this case f = n. On the other hand, if |ψ〉 is defined as being the state just
before the final measurement in Shor’s algorithm, then it is probably not feasible to sample from
R(i) efficiently on a classical computer.

For simplicity we will assume that all operations can be carried out with perfect computational
accuracy, including the degree to which the probability distribution of the generated samples π
agrees with an ideal distribution R(π), and the precision of the computed V (π)/R(π) values. Of
course, computers can only compute with finite precision. However, since we are concerned only
with approximating expectation values to within additive error ε, carrying out the computations to
finite but high precision is sufficient as long as the total accumulated computational error is small
compared to the error tolerance ε. This is discussed in more detail in appendix A of [VdN11].

3.3.2 Interference

An efficient simulation requires choosing a probability distribution R(π) for which bmax of (3.8) is
not large. A tempting choice is

Ropt(π) :=
|V (π)|∑
π′ |V (π′)| . (3.10)

2 This is shown by applying theorem 3.1 separately to the real and imaginary parts and using the fact that the
sample mean is within additive error ε of the expectation value as long as both the real and imaginary parts are within
ε/
√

2.
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It can be shown3 that this is the unique distribution yielding the minimum possible value of bmax,

bopt =
∑

π

|V (π)| . (3.11)

Being lowest possible value of bmax, (3.11) represents a lower bound on the number of samples needed
as guaranteed by the Chernoff–Hoeffding bound, although a more careful analysis of variances, for
instance, could show that the algorithm actually produces a faster than expected convergence.

An efficient algorithm requires both that bmax be small and that R(π) can be sampled from
efficiently. We do not know of a way to efficiently sample from the probability distribution (3.10) in
general, so this is not useful for computing the expectation value. Nevertheless, it is worthwhile to
discuss for a moment the case where the one condition is met (small bmax) even if the other condition
is not met (ability to efficiently draw samples). For concreteness, consider a simple quantum circuit
with only one unitary, Tr{U†MUρ}. This can be written as a sum over paths

Tr{U†MUρ} =
∑

π

V (π) (3.12)

with π = (i, j, k, l) and V (i, j, k, l) = U†ijMjkUklρli. Plugging this into (3.11) gives

bopt = Tr{Ū†M̄Ū ρ̄} (3.13)

where a bar over a vector or matrix denotes entrywise absolute value in the computational basis, a
notation that will be used throughout this paper. This generalizes in the obvious way for circuits
with more than one unitary.

Comparing (3.11) and (3.12), both are sums over paths but the latter involves an absolute value
for each path. The sum (3.12) has magnitude bounded by 1 if the observable M has eigenvalues
bounded in magnitude by 1. The sum (3.11) on the other hand can take a much larger value
than (3.12) when the terms in the latter sum exhibit cancellations due to destructive interference.
For example, consider the case |ψ〉 = N−1/2

∑
i |i〉, U the Fourier transform, and M the identity,

giving bopt =
√
N .

It may be enlightening to consider a physical example. To this end, we introduce a simple
toy-model version of Young’s double-slit experiment. Let states |0〉 and |1〉 represent a particle
immediately exiting the upper and lower slits, respectively, and let |x〉 represent a particle impacting
the detector at position x. The transfer operator representing passage of the particle from the
slits to the detector will be some unitary U satisfying U(α |0〉 + β |1〉) =

∫
x
(αψx + βφx) |x〉 dx. A

particle passing through the upper slit will impact the detector at position x with probability density
|ψx|2; for a particle passing through the lower slit the probability density is |φx|2. A particle in a
superposition of passing through upper and lower slits, in state |+〉 = (|0〉+ |1〉)/

√
2, will impact the

screen at x with probability density
∣∣∣∣

1√
2
ψx +

1√
2
φx

∣∣∣∣
2

=
1

2
|ψx|2 +

1

2
|φx|2 + Re(ψ∗xφx). (3.14)

The first two terms on the right hand side represent the probability that would be expected if
the particle were in a classical stochastic mixture of passing through one slit or the other. The
third is the interference term. Integrating this term over x yields zero, as it must in order for the
probabilities to sum to 1. The total amount of interference can be quantified by instead integrating
the absolute value of this term. Similarly, if we were interested in only part of the detector, say
x ∈ [0, 1], the interference associated with that region could be defined by integrating only over this

3 Let R(π) be any probability distribution that differs from Ropt(π) of (3.10). Then there must be a π′ such that
R(π′) < Ropt(π′). It follows that maxπ{|V (π)| /R(π)} > |V (π′)| /Ropt(π′) =

∑
π |V (π)|.
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range. It turns out to be more mathematically convenient to include all three terms in the definition
of interference; for one thing the resulting quantity will be multiplicative when considering a system
composed of non-interacting subsystems. The |ψx|2 /2 + |φx|2 /2 terms contribute at most 1 (exactly
1 if integrating over the entire range). In summary, we may define the interference associated with
the x ∈ [0, 1] region of the detector as

I =

∫

x∈[0,1]

(
1

2
|ψx|2 +

1

2
|φx|2 + |ψ∗xφx|

)
dx. (3.15)

This is essentially what is done in (3.13). Specifically, setting ρ = |+〉 〈+| and M =
∫
x∈[0,1]

|x〉 〈x| dx
in (3.13) yields

bopt =

∫

x∈[0,1]

(
1√
2
|ψx|+

1√
2
|φx|

)2

dx (3.16)

=

∫

x∈[0,1]

(
1

2
|ψx|2 +

1

2
|φx|2 + |ψ∗xφx|

)
dx. (3.17)

Note that (3.13) depends upon the choice of basis since the entrywise absolute value is basis dependent.
Typically one has some canonical basis in mind, for example when one says that the double slit
experiment exhibits interference this is relative to the position basis. For quantum circuits there is
the computational basis, although in the interest of efficient simulation one may choose to use some
other basis.

For a more complicated apparatus, such as a network of beam splitters, similar arguments apply:
we quantify interference by computing a sum over paths, summing the absolute value of each path
contribution. This definition depends upon a choice of course graining. For instance, a box which
simply passes a photon from input to output undisturbed could be said to contribute no interference.
On the other hand, if one were to take a more detailed view of this box—suppose for example that it
contains a perfectly balanced Mach–Zehnder interferometer—then one could conclude that there is
in fact interference. The same applies to simulation of quantum circuits. Although our simulation
technique has difficulty simulating the Fourier transform, a Fourier transform followed by its inverse
presents no difficulty if one course grains the circuit by replacing F †F by the identity.

The above considerations lead to the following definition.

Definition 3.3. The interference of a quantum circuit with initial state ρ, unitary operators
U (1), . . . , U (T ), and measurement M is

I
(
U (1)†, . . . , U (T )†,M,U (T ), . . . , U (1), ρ

)
= Tr

{
Ū (1)† · · · Ū (T )†M̄Ū (T ) · · · Ū (1)ρ̄

}
. (3.18)

More generally, the interference of an arbitrary expression of the form Tr{A(1) · · ·A(S)σ} is

I(A(1), . . . , A(S), σ) = Tr{Ā(1) · · · Ā(S)σ̄}. (3.19)

This definition depends on the choice of basis. Unless otherwise specified the standard (a.k.a.
computational) basis is used.

With this definition, we have that bmax ≥ I(U†,M,U, ρ) in (3.8) for any choice of probability
distribution, with equality when the distribution (3.10) is used. Since the number of samples needed
to estimate the expectation value using our technique is proportional to b2max, any quantum circuit
with very large interference could never feasibly be simulated with our technique, no matter the
choice of R(π).

While we don’t know how to efficiently sample from the optimal probability distribution (3.10),
we conjecture that there is still some way to efficiently estimate the expectation value of a quantum
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circuit in cases where the interference is low. The precise statement of this conjecture is a delicate
matter taken up in section 3.8. We will however show, by the end of the next section, that it is
possible to simulate circuits in which each unitary as well as the final observable has a low interference
producing capacity (definition 3.5).

A connection between I and the decoherence functional of Gell-Mann and Hartle is discussed in
section 3.7.4.

3.4 Markov chains

3.4.1 Introduction
The problem with the probability distribution (3.10) is that there is no obvious way to efficiently
sample from it using a classical computer. So while only O(log(δ−1)ε−2I2) samples are needed
(with I given by definition 3.3), each sample may be very complicated to evaluate. The essence of
the difficulty is that this distribution treats the circuit holistically, so drawing samples apparently
requires an understanding of how all the factors of (3.2) interact with each other. In order to avoid
this problem we instead use a probability distribution defined in terms of a time-inhomogeneous
Markov chain with a transition corresponding to each operator in (3.2). More precisely, we take the
convex combination of two (unrelated) Markov chains, one proceeding left-to-right and the other
proceeding right-to-left. This way, it is only necessary to understand each individual operator, not
the interactions between operators. The computation time of this simulation will end up being
related not to the interference I but rather the product of the interference producing capacities of
each factor (a term that will be defined at the end of this section).

The end result of this section will be an algorithm for estimating products of the form
Tr{A(1) · · ·A(S)σ} where σ and the A(t) are matrices, not necessarily unitary or Hermitian
and possibly rectangular. This includes as a special case quantum circuits of the form
Tr{U (1)† · · ·U (T )†MU (T ) · · ·U (1)ρ}. We build the algorithm step by step, considering first an example
that demonstrates why a convex combination of probability distributions is needed, second an example
that explains how the Markov chains are built, and finally using a convex combination of Markov
chains. The exposition in this section is meant to be instructive; formal theorems will be taken up in
section 3.5.

3.4.2 Inner product
Consider the task of estimating the inner product 〈ψ|φ〉 =

∑
i ψ
∗
i φi where the two vectors satisfy the

property ‖ψ‖p = ‖φ‖q = 1 with 1/p+ 1/q = 1.4 In the context of quantum circuits p = q = 2 is the
natural choice; however, we allow general `p-norms because the case p = 1, q =∞ is also important
and because the general case may be of independent interest. Here, as in the more general case that
will follow, the key is to find a probability distribution R(i) that will be suitable for application of
corollary 3.2. It is needed that

bmax = max
i

{ |V (i)|
R(i)

}
= max

i

{ |ψ∗i φi|
R(i)

}
(3.20)

is not large. There are two obvious choices for the probability distribution: P (i) = |ψi|p and
Q(i) = |φi|q. Unfortunately, neither of these will guarantee a small bmax. However, for each i at least
one of the distributions P (i) or Q(i) will work well. The solution is to take a convex combination of
these two distributions,

R(i) =
1

p
P (i) +

1

q
Q(i). (3.21)

4 The `p-norm, ‖·‖p, is defined as ‖ψ‖p =
(∑

i |ψi|
p)1/p when 1 ≤ p < ∞ and ‖ψ‖p = maxi |ψi| when p = ∞.

When 1/p+ 1/q = 1, the norms ‖·‖p and ‖·‖q are dual to each other.
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The algorithm that follows is an adaptation of one that appears in [VdN11] (they used p = q = 2 and
a slightly different technique). We present it as a formal theorem, in order to demonstrate how to
carefully track the algorithm’s time complexity.

Example 3.4. Let 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1. Let |ψ〉 and |φ〉 be vectors with ‖ψ‖p = ‖φ‖q = 1.
Suppose that it is possible to sample from the probability distributions P (i) = |ψi|p and Q(i) = |φi|q,
and to compute entries ψi and φi, in average time O(f) for some f . It is possible, with probability
less than δ > 0 of exceeding the error bound, to estimate 〈ψ|φ〉 to within additive error ε > 0 in
average time O(log(δ−1)ε−2f).

Proof. Let V (i) = ψ∗i φi and R(i) = P (i)/p + Q(i)/q. To apply corollary 3.2 we need to bound
bmax = maxi{|V (i)| /R(i)}. Making use of the (weighted) inequality of arithmetic and geometric
means,5

bmax = max
i
{|V (i)| /R(i)} (3.22)

= max
i
{|ψ∗i φi| /[P (i)/p+Q(i)/q]} (3.23)

≤ max
i
{|ψ∗i φi| /[P (i)1/pQ(i)1/q]} (3.24)

= 1. (3.25)

By corollary 3.2, 〈ψ|φ〉 =
∑
i V (i) can be estimated at the cost of drawing O(log(δ−1)ε−2) samples i

according to R(i) and computing the corresponding V (i)/R(i) values. Sampling from R(i) can be
accomplished as follows: flip a biased coin that lands heads with probability 1/p. If it lands heads
then draw i from P (i), otherwise draw i from Q(i). By assumption this takes average time O(f).
Next, V (i)/R(i) can be computed directly from ψi and φi, each of which can in turn be computed in
average time O(f). The O(log(δ−1)ε−2) samples (as well as their mean) can therefore be computed
in average time O(log(δ−1)ε−2f).

3.4.3 Nearly stochastic matrices
We now move to a more general case, estimation of

〈
ψ
∣∣A(1) · · ·A(S)

∣∣φ
〉
. For the sake of simplicity,

suppose that there are only two operators (i.e. S = 2) so that the goal is to estimate 〈ψ|AB|φ〉. This
can be written as a sum over paths as in (3.2),

〈ψ|AB|φ〉 =
∑

ijk

ψ∗iAijBjkφk. (3.26)

To apply corollary 3.2 to this problem, set π = (i, j, k) and V (i, j, k) = ψ∗iAijBjkφk. For efficient
simulation it suffices to find a probability distribution P (i, j, k) from which we can efficiently draw
samples using a classical computer, for which V (i, j, k)/P (i, j, k) can be efficiently computed, and for
which

bmax = max
ijk

{ |ψ∗iAijBjkφk|
P (i, j, k)

}
(3.27)

is small enough that the estimation will converge reasonably fast. As discussed in the previous
section, a tempting choice for the probability distribution is given by (3.10), however it is not clear
how one would efficiently draw samples from this since doing so apparently requires an understanding
of how 〈ψ|, A, B, and |φ〉 interact with each other. To avoid this problem we define P (i, j, k) in
terms of a time-inhomogeneous Markov chain,

P (i, j, k) = Pψ(i)PA(j|i)PB(k|j), (3.28)
5 The weighted inequality of arithmetic and geometric means is a generalization of the more familiar inequality

x/2 + y/2 ≥ √xy. If 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1 then x/p+ y/q ≥ x1/py1/q .
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with each transition depending on only one of the components of 〈ψ|AB|φ〉. Plugging this into (3.27)
gives

bmax = max
ijk

{ |ψ∗iAijBjkφk|
Pψ(i)PA(j|i)PB(k|j)

}
(3.29)

= max
ijk

{ |ψ∗i |
Pψ(i)

· |Aij |
PA(j|i) ·

|Bjk|
PB(k|j) · |φk|

}
(3.30)

≤ max
i

{ |ψ∗i |
Pψ(i)

}
max
ij

{ |Aij |
PA(j|i)

}
max
jk

{ |Bjk|
PB(k|j)

}
max
k
{|φk|} . (3.31)

The goal is then to find Pψ(i), PA(j|i), and PB(k|j) that minimize the terms of (3.31). Consider first
the case where 〈ψ| is a probability distribution, the matrices A and B are right-stochastic matrices,6
and |φ〉 has small entries (say, ‖φ‖∞ ≤ 1). We can set Pψ(i) = ψi, PA(j|i) = Aij , and PB(k|j) = Bjk,
with the result that each factor in (3.31) is bounded by 1. If |φ〉 is not a probability distribution, we
can turn it into one by defining Pψ(i) = |ψi| /‖ψ‖1, similarly if A is not a right-stochastic matrix we
can set PA(j|i) = |Aij | /

∑
j′ |Aij′ | (and likewise for B). Then (3.31) becomes

bmax ≤ ‖ψ‖1 max
i




∑

j′

|Aij′ |



max

j

{∑

k′

|Bjk′ |
}
‖φ‖∞ (3.32)

= ‖ψ‖1‖Ā‖∞‖B̄‖∞‖φ‖∞. (3.33)

Here, as in the rest of the paper, we use the induced norm for operators: ‖A‖p = maxu‖Au‖p/‖u‖p
(we do not use the entrywise or Schatten norms). Under this notation, ‖M‖2 is the largest singular
value of M , ‖M‖1 is the maximum absolute column sum, and ‖M‖∞ is the maximum absolute row
sum. By corollary 3.2, the value of 〈ψ|AB|φ〉 can be estimated by drawing

O
(
log(δ−1)ε−2b2max

)
≤ O

(
log(δ−1)ε−2‖ψ‖21‖Ā‖2∞‖B̄‖2∞‖φ‖2∞

)
(3.34)

samples (i, j, k) from P (i, j, k) and averaging the corresponding V (i, j, k)/P (i, j, k).

3.4.4 General p, q

In the case of quantum circuits, it is the `2-norm that is relevant. Instead of bmax ≤
‖ψ‖1‖Ā‖∞‖B̄‖∞‖φ‖∞ from the previous example, we want bmax ≤ ‖ψ‖2‖Ā‖2‖B̄‖2‖φ‖2. For the
sake of generality, we allow arbitrary p, q satisfying 1/p+ 1/q = 1. The goal is to find a probability
distribution that yields bmax ≤ ‖ψ‖p‖Ā‖q‖B̄‖q‖φ‖q. As in section 3.4.2, the way to proceed is by
taking a convex combination of two probability distributions, R(i, j, k) = P (i, j, k)/p+Q(i, j, k)/q.
Here P (i, j, k) will be a time-inhomogeneous Markov chain proceeding in the i→ j → k direction
and Q(i, j, k) a different Markov chain proceeding in the k → j → i direction. Again the inequality
of arithmetic and geometric means plays a crucial role, giving

R(i, j, k) = P (i, j, k)/p+Q(i, j, k)/q (3.35)

≥ P (i, j, k)1/pQ(i, j, k)1/q (3.36)

= [Pψ(i)PA(j|i)PB(k|j)]1/p [QA(i|j)QB(j|k)Qφ(k)]
1/q

. (3.37)

6 A right-stochastic matrix is a nonnegative matrix with each row summing to 1, a left-stochastic matrix has each
column summing to 1. We do not require stochastic matrices to be square.
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With this we have

bmax = max
ijk

{ |ψ∗iAijBjkφk|
R(i, j, k)

}
(3.38)

≤ max
ijk

{ |ψ∗iAijBjkφk|
P (i, j, k)1/pQ(i, j, k)1/q

}
(3.39)

= max
ijk

{ |ψ∗i |
Pψ(i)1/p

· |Aij |
PA(j|i)1/pQA(i|j)1/q

· |Bjk|
PB(k|j)1/pQB(j|k)1/q

· |φk|
Qφ(k)1/q

}
(3.40)

≤ max
i

{
|ψ∗i |

Pψ(i)
1
p

}
max
ij

{
|Aij |

PA(j|i) 1
pQA(i|j) 1

q

}
max
jk

{
|Bjk|

PB(k|j) 1
pQB(j|k)

1
q

}
max
k

{
|φk|

Qφ(k)
1
q

}

(3.41)

= bψbAbBbφ, (3.42)

where bψ, bA, bB, and bφ label the four factors of (3.41). By corollary 3.2, the number of samples
needed in order to estimate 〈ψ|AB|φ〉 is O(log(δ−1)ε−2b2ψb

2
Ab

2
Bb

2
φ). The quantities bψ, bA, bB, and

bφ are therefore identified as being the simulation cost due to each of the components of 〈ψ|AB|φ〉.
We show in appendix 3.A (theorem 3.22) that for any choice of probability distribution bA ≥ ‖Ā‖q
and that there are optimal probability distributions achieving bA = ‖Ā‖q (and similarly for B, ψ,
and φ). Using these gives

bmax ≤ ‖ψ‖p‖Ā‖q‖B̄‖q‖φ‖q. (3.43)

Whether these optimal probability distributions can be efficiently sampled from is a matter that
needs to be considered on a case by case basis, however we show in section 3.6 that this is indeed
the case for a wide range of matrices, both unitary and Hermitian. Additionally, in terms of query
complexity rather than time complexity these efficient sampling requirements can for the most part
be ignored, as we will discuss further in section 3.5.3.

3.4.5 Dyads and density operators

It is possible to further generalize to expressions of the form Tr{ABσ}. The special case 〈ψ|AB|φ〉 is
obtained by setting σ = |φ〉 〈ψ|. The above derivation is easily adapted by writing σki, Pσ(i), and
Qσ(k) instead of φkψ∗i , Pψ(i) and Qφ(k). With these substitutions, (3.38)-(3.42) become

bmax = max
ijk

{ |AijBjkσki|
R(i, j, k)

}
(3.44)

≤ max
ijk

{ |Aij |
PA(j|i)1/pQA(i|j)1/q

· |Bjk|
PB(k|j)1/pQB(j|k)1/q

· |σki|
Pσ(i)1/pQσ(k)1/q

}
(3.45)

≤ max
ij

{ |Aij |
PA(j|i)1/pQA(i|j)1/q

}
max
jk

{ |Bjk|
PB(k|j)1/pQB(j|k)1/q

}
max
ki

{ |σki|
Pσ(i)1/pQσ(k)1/q

}

(3.46)

= bAbBbσ. (3.47)

The bσ factor differs from the other two in that the probability distributions are not conditional. This
stems from the fact that σ represents the starting point of the Markov chains. If σ = |φ〉 〈ψ| then
taking the probability distributions Pσ(i) = |ψi|p /‖ψ‖p and Qσ(k) = |φk|q /‖φ‖q gives bσ = ‖ψ‖p‖φ‖q
as in (3.43). If p = q = 2 and if σ is a density operator (positive semidefinite and trace 1) then taking
the probability distributions Pσ(i) = Qσ(i) = σii gives bσ = 1 due to the inequality |σki| ≤

√
σkkσii,

which is satisfied by positive semidefinite matrices.

43



3.4.6 Interference producing capacity
In section 3.3.2 we interpreted the lowest possible bmax value, obtained by using the holistic probability
distribution (3.10), as being the interference of a quantum circuit. Although this probability
distribution achieves the lowest bmax, there is no clear way to draw samples efficiently and for this
reason the Markov chain technique of this section was developed. The result was a strategy that
depends only on properties of the individual operators rather than on the expression as a whole. The
bmax value for this strategy is upper bounded by (3.47).

Consider now the minimum possible value of one of the factors in (3.47), for instance bA. In
appendix 3.A (theorem 3.22) we will show that the best possible choice of PA(j|i) and QA(i|j) yields
bA = ‖Ā‖q. In the case of quantum circuits the relevant norm is p = q = 2, so this becomes7

bA = ‖Ā‖2. (3.48)

This can be interpreted in terms of interference: it is the largest possible contribution A can make to
the interference I of definition 3.3. Specifically, since ‖·‖2 gives the maximum singular value of its
argument, we have

I(A(1), . . . , A(S), |φ〉 〈ψ|) ≤ ‖Ā(1)‖2 · · · ‖Ā(S)‖2‖φ‖2‖ψ‖2. (3.49)

Furthermore, for any operator A we have

max
‖ψ‖2=‖φ‖2=1

I(A, |φ〉 〈ψ|) = ‖Ā‖2. (3.50)

For this reason, we interpret ‖Ā‖2 as being the interference producing capacity of A.8

Definition 3.5. The interference producing capacity of a matrix A is

Imax(A) = ‖Ā‖2. (3.51)

This definition, like definition 3.3, is basis dependent. Here the basis dependence arises from
the entrywise absolute value. Unless otherwise specified, we will work in the computational basis.
In the next sections we will show the product of the Imax values for the operations and final
measurement of a circuit to be a necessary resource for quantum speedup: if this quantity is low
then a circuit can be classically simulated. The same claim applies also for other bases, and even
for more exotic representations (as we will show in section 3.7.1). The situation is not so much
different from, for instance, Gottesman–Knill theorem which claims that stabilizer circuits may be
efficiently simulated [Got98]. Although a circuit may at first not appear to be a stabilizer circuit it
may be so after a change of basis (i.e. after conjugating the initial state, all unitary operations, and
all measurements by some unitary).

The Imax value for various operators is listed in table 3.1. As was shown informally in this section,
and more formally in the next section, it is possible to efficiently simulate quantum circuits when
the product of the Imax values of all operators is not large. So, one may interpret a small Imax
value to mean that a unitary operator contributes only minimally to quantum speedup. On the high
end of the table are the Fourier and Hadamard transforms, having the maximum possible value of
Imax; these are difficult for us to simulate (at least in the computational basis). On the low end
are the Pauli and the permutation matrices, having Imax = 1; these contribute nothing to quantum
speedup (relative to our simulation scheme). Among unitaries, the only operators with Imax = 1 are
permutations with phases, U =

∑
j e
iθj |σ(j)〉 〈j|.

7 We focus here on the case p = 2 of relevance to quantum circuits, although the entire subsection could easily be
generalized to p 6= 2.

8 Our measure of interference is different from, and seemingly unrelated to, the one defined in [BG06], which in the
case of unitary matrices reduces to N −

∑
ij |Uij |

4.
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Matrix Imax

Fourier or Hadamard transform on n qubits 2n/2

Arbitrary gate on n qudits no more than dn/2

Haar wavelet transform on n qubits
√

1 + n

k-sparse unitary no more than
√
k

Grover reflection Imax → 3 as n→∞
Permutation in computational basis 1
Pauli matrices 1
Rank one projector 1

Table 3.1: The Imax value for various matrices. Operators with larger Imax value are harder to
simulate using our technique. Proofs for the nontrivial cases are presented in appendix 3.C.

3.5 EPS and EHT operators

3.5.1 Definitions
We will now present two definitions codifying the requirements operators must meet in order that
products of the form Tr{A(1) · · ·A(S)σ} can be estimated using the techniques of the previous section.
In the previous section, using a pair of Markov chains yielded a simulation strategy in which each
component of Tr(ABσ) can be treated independently, with A, B, and σ contributing costs bA, bB,
and bσ to the total number of samples needed as per (3.47). Each sample requires drawing a random
path according to the distribution R(i, j, k) and then computing V (i, j, k)/R(i, j, k). Drawing the
random path requires considering only one operator at a time since R(i, j, k) is defined in terms of
Markov chains. Similarly, computing V (i, j, k)/R(i, j, k) can be done considering one operator at a
time since

V (i, j, k)

R(i, j, k)
=

AijBjkσki
P (i, j, k)/p+Q(i, j, k)/q

(3.52)

=

{
1

p

P (i, j, k)

AijBjkσki
+

1

q

Q(i, j, k)

AijBjkσki

}−1

(3.53)

=

{
1

p

PA(j|i)
Aij

PB(k|j)
Bjk

Pσ(i)

σki
+

1

q

QA(i|j)
Aij

QB(j|k)

Bjk

Qσ(k)

σki

}−1

. (3.54)

Focusing on a single component, say A, conditions for efficient simulation can be identified (note that
σ requires slightly different conditions, which we deal with later). First, the quantity bA of (3.47)
should be small in order that the number of samples required be small. Second, it must be possible
to efficiently sample from the probability distributions PA(j|i) and QA(i|j) and to compute the
contributions due to A in (3.54), namely PA(j|i)/Aij and QA(i|j)/Aij . We express these conditions
as a definition. However, it will be useful to generalize by allowing an extra index k in the definition
below (not related to the k that appears above). If k takes only a single value (say, k = 0) the
definition below exactly encompasses the conditions outlined above. The extra freedom granted by
k will allow, as we will show shortly, treatment of sums, products, and exponentials of matrices
(theorem 3.10). In the case p = 1, q =∞ it was the matrices resembling stochastic matrices that could
be efficiently simulated. For this reason, for general p, q we give the name efficient pseudo-stochastic
(EPS) to matrices that we can efficiently simulate.

Definition 3.6 (EPS). Let 1 ≤ p ≤ ∞, 1/p+1/q = 1, and b <∞. An M×N matrix A is EPSp(b, f)
if there is a finite or countable set K, values αmnk ∈ C, and conditional probability distributions
P (n, k|m) and Q(m, k|n) with m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, and k ∈ K, satisfying the following
conditions:
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(a)
∑
k∈K αmnk = Amn.9

(b)

max
mnk

{ |αmnk|
P (n, k|m)1/pQ(m, k|n)1/q

}
≤ b, (3.55)

with the convention that 0/0 = 0.

(c) Given any m, it is possible in average time O(f) on a classical computer to sample n, k from the
probability distribution P (n, k|m) and then compute αmnk/P (n, k|m) and αmnk/Q(m, k|n).

(d) Given any n, it is possible in average time O(f) on a classical computer to sample m, k from the
probability distribution Q(m, k|n) and then compute αmnk/P (n, k|m) and αmnk/Q(m, k|n).

This definition is related to interference producing capacity in the following way. It is always
possible to satisfy conditions (a) and (b) with b = ‖Ā‖q, and it is impossible to do better. This is
proved in appendix 3.A. So, for the case p = q = 2 the optimal value of b is equal to the interference
producing capacity of A. Since b (multiplied for all operators in a circuit) determines how many
samples will be required for our simulation technique, this connects interference producing capacity
to difficulty of simulation.

Although conditions (a) and (b) can always be satisfied with b = ‖Ā‖q for some αmnk, P (n, k|m),
and Q(m, k|n), it could be the case that these do not satisfy (c) and (d). In other words, it may be
time consuming to sample from these probability distributions. An example would be a permutation
matrix A |x〉 = |g(x)〉. Such a matrix has ‖Ā‖q = 1, so it has no interference producing capacity.
Nevertheless, it would be difficult to simulate if the function g were difficult to calculate. In some
sense (c) and (d) constitute a requirement that the matrix A be well understood from a computational
perspective. In practice, (c) and (d) have not presented an obstacle for any of the operators that we
have considered. If one is concerned with query complexity rather than time complexity then (c)
and (d) can mostly be ignored. This will be explored in section 3.5.3.

There is a subtlety in conditions (c) and (d) that deserves discussion. It is required that the oper-
ations be carried out in average time O(f). It is allowed that αmnk/P (n, k|m) and αmnk/Q(m, k|n)
be difficult to compute for some m,n, k triples as long as those occur rarely when sampling from
P (n, k|m) or Q(m, k|n). In our implementation of exponentials of operators (theorem 3.10(c)) the
time required is proportional to k, and so is unbounded since k ∈ {0, 1, . . . }, however P (n, k|m) and
Q(m, k|n) decay exponentially in k so the average time is small.

We now present a definition that embodies the conditions σ must satisfy in order to yield an
efficient simulation. Looking to (3.46) and (3.54), the difference between the factors relating to σ
and those relating to A are that the latter involve conditional probability distributions. This stems
from the fact that the Markov chains begin at σ and so have no index to condition upon. With
this difference in mind, we provide a definition analogous to definition 3.6 but with non-conditional
probability distributions. Since the Markov chains begin and end at σ, we name the suitable matrices
efficient head/tail (EHT) matrices.

Definition 3.7 (EHT). Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, and b < ∞. An M × N matrix σ is
EHTp(b, f) if there is a finite or countable set K, values αmnk ∈ C, and probability distributions
P (n, k) and Q(m, k) with m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, and k ∈ K, satisfying the following
conditions:

(a)
∑
k∈K αmnk = σmn.

(b)

max
mnk

{ |αmnk|
P (n, k)1/pQ(m, k)1/q

}
≤ b, (3.56)

9 We show in appendix 3.B (lemma 3.30) that this series converges absolutely, so there is no ambiguity regarding
the way that an infinite K is enumerated.
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with the convention that 0/0 = 0.

(c) It is possible in average time O(f) on a classical computer to sample n, k from the probabil-
ity distribution P (n, k) and then, given any m ∈ {1, . . . ,M} to compute αmnk/P (n, k) and
αmnk/Q(m, k).

(d) It is possible in average time O(f) on a classical computer to sample m, k from the proba-
bility distribution Q(m, k) and then, given any n ∈ {1, . . . , N} to compute αmnk/P (n, k) and
αmnk/Q(m, k).

This definition does not relate to interference. For the case of quantum circuits we can assume σ
to be a density operator. In section 3.5.4 we show that for density operators it is always possible to
achieve b = 1 in the above definition as long as one can simulate measurements in the computational
basis and compute individual matrix entries in average time O(f).

The definition of EHT is more strict than that of EPS: any EHT operator can be seen to also be
EPS by using the probability distributions P (n, k|m) = P (n, k) and Q(m, k|n) = Q(m, k). Therefore,
since it is not possible to have b < ‖Ā‖q for EPS operators, it is also not possible to have b < ‖σ̄‖q for
EHT operators. As mentioned above, in the case of EPS it is always possible to satisfy conditions (a)
and (b) with b = ‖Ā‖q, however since EHT is more strict there are operators σ for which it is not
possible to have b = ‖σ̄‖q. Theorem 3.22(d) in appendix 3.A gives that b = ‖σ̄‖Tr is possible when
p = q = 2 where ‖·‖Tr is the trace norm (and a generalization is provided for p 6= 2).

In section 3.6 we will consider the case p = q = 2, which is the norm relevant to quantum circuits,
and give several examples of states that are EHT2(b, f) and operators that are EPS2(b, f) where b
is small and f is polynomial in the number of qubits (or polylog in the dimension of the system).
Expectation values of circuits built from such states and operators can be efficiently simulated.
Specifically, we have the following theorem, the central theorem of this paper, whose proof will be
deferred until after lemma 3.11.

Theorem 3.8 (Efficient simulation). Let σ be EHTp(bσ, fσ) and for t ∈ {1, . . . , S} let A(t) be
EPSp(bt, ft). Then, with probability less than δ > 0 of exceeding the error bound, Tr{A(1) · · ·A(S)σ}
can be estimated to within additive error ε > 0 in average time O(log(δ−1)ε−2b2f) where b = bσ

∏
t bt

and f = fσ +
∑
t ft.

3.5.2 Operations that preserve EPS/EHT properties

We now discuss mathematical operations that preserve the EPS and EHT properties. These include
scaling, transpose, adjoint, multiplication, addition, and exponentiation (theorems 3.9 and 3.10).
The first three follow immediately from the definitions, so the following theorem is presented without
proof.

Theorem 3.9. Let A be EPSp(b, f) and σ be EHTp(b, f). Let s ∈ C be a scalar. Then

(a) σ is EPSp(b, f).

(b) sA is EPSp(|s| b, f).

(c) sσ is EHTp(|s| b, f).

(d) A> and A† are EPSp(b, f).

(e) σ> and σ† are EHTp(b, f).

The presence of the k index in definition 3.6 allows treatment of sums and products of operators.
Consider for instance the product AB. The two factors of (3.45) relating to A and B can be combined
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to match the conditions of definition 3.6 as follows. Begin by relabeling the indices of (3.45) from
i, j, k to m, k, n and proceed as follows,

bmax ≤ max
mnk

{ |σnm|
Pσ(m)1/pQσ(n)1/q

· |Amk|
PA(k|m)1/pQA(m|k)1/q

· |Bkn|
PB(n|k)1/pQB(k|n)1/q

}
(3.57)

≤ max
mn

{ |σnm|
Pσ(m)1/pQσ(n)1/q

}
·max
mnk

{ |Amk|
PA(k|m)1/pQA(m|k)1/q

· |Bkn|
PB(n|k)1/pQB(k|n)1/q

}

(3.58)

≤ max
mn

{ |σnm|
Pσ(m)1/pQσ(n)1/q

}
·max
mnk

{ |AmkBkn|
[PA(k|m)PB(n|k)]1/p[QA(m|k)QB(k|n)]1/q

}
(3.59)

= bσbAB . (3.60)

Defining PAB(n, k|m) = PA(k|m)PB(n|k), QAB(m, k|n) = QB(k|n)QA(m|k), and αmnk = AmkBkn,
the bAB factor reduces to

bAB = max
mnk

{ |αmnk|
PAB(n, k|m)1/pQAB(m, k|n)1/q

}
. (3.61)

This resembles the factors involving A or B that appear in (3.46) but with the addition of an extra
index k appearing in both the numerator and in the probability distributions. Allowing such an
extra index enables treatment of AB in the same manner as the individual factors A and B. This is
formalized by theorem 3.10(b) below, which states that the product of EPS matrices is EPS. In the
general case this procedure is slightly complicated by the fact that A and B may in turn have their
own extra indices k′ and k′′, which must be inherited by the product AB.

Sums are handled in a similar way. An expression such as Tr((A+B)σ) is estimated by using A
for a fraction of the samples and B for the remainder. This works since Tr((A+B)σ) is twice the
average of Tr(Aσ) and Tr(Bσ). The k index is used to randomly choose between A or B for each
sample. Exponentials are treated by applying these sum and product rules to eA =

∑∞
j=0A

j/j!.

Theorem 3.10 (Operations on EPS). Let A be a matrix that is EPSp(bA, fA) and let B be a matrix
that is EPSp(bB , fB). Then, assuming in each case that A and B have a compatible number of rows
and columns, the following hold.

(a) A+B is EPSp(bA + bB ,max{fA, fB}).

(b) AB is EPSp(bAbB , fA + fB).

(c) eA is EPSp(eb, bf).

Proof. The proofs are in appendix 3.B. Rule (a) is a special case of theorem 3.31, which treats finite
or infinite linear combinations.

Since the value b in definition 3.6 (with p = q = 2) is lower bounded by interference producing
capacity Imax, theorem 3.10 has the following interpretation. By (a), Imax is convex. By (b), it is
sub-multiplicative. By (c), the interference producing capacity of a Hamiltonian evolution eiHt is at
most exponential in tImax(H).

We now prove theorem 3.8, regarding estimation of Tr{A(1) · · ·A(S)σ}. While this can be proved
directly using Markov chains, as was done in section 3.4, this would be notationally tedious. It is much
easier to first repeatedly apply the product rule, theorem 3.10(b), to show that A = A(1) · · ·A(S) is
EPSp(

∏
t bt,

∑
t ft). It then suffices to show that Tr(Aσ) can be estimated. Although this may seem

like a slightly non-constructive proof, this strategy arose due to object-oriented techniques (C++)
used during actual implementation of the algorithm. Unrolling the proof of the product theorem, as
well as the proof of the theorem that follows, gives an argument very similar to that presented in
section 3.4.
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Lemma 3.11. Let σ be an N ×M matrix that is EHTp(bσ, fσ). Let A be an M ×N matrix that is
EPSp(bA, fA). It is possible to estimate Tr(Aσ) to within additive error ε > 0, with probability less
than δ > 0 of exceeding the error bound, in average time O[log(δ−1)ε−2b2σb

2
A(fσ + fA)].

Proof. The proof is in appendix 3.B, and follows along the lines of the techniques developed in
section 3.4.

Proof of theorem 3.8. By iterated application of theorem 3.10(b), the product A = A(1) · · ·A(S) is
EPSp(

∏
t bt,

∑
t ft). By lemma 3.11 the value of Tr(Aσ) can be estimated in time O(log(δ−1)ε−2b2f)

where b = bσ
∏
t bt and f = fσ +

∑
t ft.

3.5.3 Query complexity
The simulation algorithm of this paper involves sampling a number of paths via Markov chains,
each path evaluation in turn requiring certain operations to be performed. Definitions 3.6 and 3.7
each consist of two pairs of conditions, (a) and (b) relating to the number of paths that need to
be evaluated (quantified by b), and (c) and (d) concerning tasks that need to be performed for
each path (quantified by f). In appendix 3.A we show (theorem 3.22) that there are always αmnk,
P (n, k|m), and Q(m, k|n) satisfying conditions (a) and (b) with b = ‖Ā‖q (and in fact smaller b is
not possible). However, these probability distributions may not satisfy (c) and (d), which require
that the distributions can be sampled from efficiently. It is difficult to make any general statement
regarding satisfaction of (c) and (d), since time complexity of computation is in general a difficult
problem; satisfaction of these two conditions needs to be considered on a case-by-case basis. However,
when considering query complexity rather than time complexity, (c) and (d) can for the most part
be ignored as we shall now explain. Note that communication complexity (discussed in section 3.7.2)
offers another context in which (c) and (d) can be ignored, since there too computation time is free.

Consider the situation where an algorithm is required to answer some question about an oracle,
which is to be thought of as a black box provided to the algorithm (Grover’s algorithm is a prominent
example). For a classical (i.e. non-quantum) algorithm the oracle can be any function between two
finite sets, say g : X → Y . It will be convenient to consider sets of integers, X = {0, 1, . . . , |X| − 1}
and Y = {0, 1, . . . , |Y | − 1}. The algorithm can query the oracle by providing it a value x ∈ X, and
the oracle responds with g(x). This is the only allowed way to gain information about g. The query
complexity of the algorithm is defined to be the number of times it queries the oracle. In particular,
the query complexity is not affected by the amount of time spent performing computations between
queries; computation, even lengthy computation, is not charged for.

Quantum circuits are provided access to an oracle in the form of a unitary operator10

Og =
∑

x∈X,y∈Y
|x〉 〈x| ⊗ |y + g(x)〉 〈y| (3.62)

where |x〉 ⊗ |y〉 ∈ C|X| ⊗ C|Y | are computational basis vectors and where the addition y + g(x) is
modulo |Y |. The query complexity of a quantum circuit is defined to be the number of times Og
appears in the circuit. For example, Grover’s algorithm has query complexity O(

√
N).

Computational complexity classes can be analyzed by comparing how two classes perform when
given access to equivalent oracles. For example, oracles have been constructed relative to which
quantum computers perform exponentially more efficiently than classical computers (e.g. Simon’s
problem [Sim94]), whereas proving that quantum computers are faster than classical computers in
the absence of an oracle is an extremely difficult open problem.

Considering query complexity rather than time complexity simplifies the analysis of the present
paper. Suppose we wish to simulate a quantum circuit containing at least one instance of an oracle

10 Sometimes an alternate definition O′g =
∑
x∈X,y∈Y e

2πig(x)y/|Y | |x〉 〈x| ⊗ |y〉 〈y| is used. All claims apply to this
definition as well, requiring only a modification of (3.63)-(3.66).
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Og (e.g. Grover’s algorithm) on a classical computer that also has oracle access to g. Simulation of
the quantum circuit on the classical computer will require making queries to g and we can ask how
many queries are needed, ignoring the amount of computational time used. We do this by modifying
conditions (c) and (d) of definitions 3.6 and 3.7 to require that the sampling and computation tasks
be completed using O(f) queries to g, rather than requiring O(f) time (time now being a resource
that is not charged for). We will refer to such modified definitions by invoking the phrase “in terms
of query complexity”.

We will now show that in terms of query complexity, Og is EPSp(1, 1). Since this unitary operates
on two subsystems, C|X| ⊗ C|Y |, the indices m and n in definition 3.6 are tuple valued. We write
m = (x, y) ∈ X × Y and n = (x′, y′) ∈ X × Y . Take K to be the singleton set {0} and define

α(x,y)(x′,y′)k := P ((x′, y′), k|(x, y)) (3.63)
:= Q((x, y), k|(x′, y′)) (3.64)
:= 〈xy|Og|x′y′〉 (3.65)
= δ(x, x′)δ(y + g(x), y′) (3.66)

where δ is the Kronecker delta. It is easy to see that these satisfy conditions (a) and (b) of definition 3.6
with b = 1. Sampling from these probability distributions and computing the values of any of these
quantities can be done with a single query of g (note that the conditional probability distributions
are deterministic), therefore conditions (c) and (d) are satisfied with f = 1.

On the other hand, for matrices that are not defined in terms of the oracle g, such as the
I − 2 |+〉 〈+| reflection operators in Grover’s algorithm, the operations required by conditions (c)
and (d) can be carried out using zero queries. Therefore conditions (c) and (d) can be completely
ignored, and we can take f = 0. We are then free to focus on determining the probability distributions
giving the smallest possible value of b in conditions (a) and (b) without regard to whether these can
be efficiently sampled from (since we are charging for queries only and time is free). It is desirable
to make b as small as possible, since this determines the number of paths that need to be sampled.
The number of paths sampled matters, because each will require evaluating the entire Markov chain,
which involves every operator. At least one of these operators involves the oracle, so at least one
query needs to be made for each path that is sampled. The total number of oracle queries will
be the number of paths sampled times the number of queries per path. In appendix 3.A we show
(theorem 3.22) the existence of probability distributions which satisfy conditions (a) and (b) with
b = ‖Ā‖q. So in terms of query complexity, any matrix A not defined in terms of an oracle is
EPSp(‖Ā‖q, 0). In the case p = q = 2 of relevance to quantum circuits, we have ‖Ā‖2 = Imax(A),
the interference producing capacity of A. Theorem 3.22 also shows that any σ not defined in terms
of an oracle is EHT2(‖σ‖Tr, 0) where ‖·‖Tr is the trace norm (a generalization is provided for p 6= 2).

3.5.4 Sufficient conditions for EPS/EHT
We now present theorems that can be used to show that specific operators are EPS or EHT. As
stated above, if one is only interested in query complexity then any matrix A not depending on an
oracle is guaranteed to be EPSp(‖Ā‖q, 0). However, in terms of time complexity it is possible that
the probability distributions that achieve b = ‖Ā‖q cannot be sampled from efficiently (giving large
f). For this reason it is worthwhile to introduce probability distributions that are more likely to be
efficiently sampled, and which in some cases still achieve a small b. In the theorem below each row
and column of A is treated as a probability distribution, correcting for phases and normalization.
This works well when the absolute row and column sums of A are small.

Theorem 3.12. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Let A be an M × N matrix. Define the
probability distributions

P (n|m) =
|Amn|∑
n′ |Amn′ |

, Q(m|n) =
|Amn|∑
m′ |Am′n|

. (3.67)
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Suppose that it is possible in average time O(f) on a classical computer to perform the following
operations.

(a) Given m, sample n from the probability distribution P (n|m).

(b) Given n, sample m from the probability distribution Q(m|n).

(c) Given m,n, compute Amn,
∑
n′ |Amn′ |, and

∑
m′ |Am′n|.

Then A is EPSp(b, f) with b = ‖A‖1/p∞ ‖A‖1/q1 . Note that b is the weighted geometric mean of the
maximum row and column sums of A.

Proof. This follows directly from plugging the probability distributions (3.67) into definition 3.6,
with K = {0} (i.e. not making use of the index k). Note that ‖A‖∞ is the maximum absolute row
sum and ‖A‖1 is the maximum absolute column sum of A.

Finally, we present theorems that cover the two most important examples of EHT operators:
dyads and density operators.

Theorem 3.13 (Dyads are EHT). Let |φ〉 and 〈ψ| be vectors such that the probability distributions
P (n) = |ψn|p /‖ψ‖pp and Q(m) = |φm|q /‖φ‖qq can be sampled from, and the corresponding ψn and
φm can be computed, in average time O(f). Then the dyad |φ〉 〈ψ| is EHTp(‖ψ‖p‖φ‖q, f).

Proof. This can be seen immediately by plugging the given probability distributions into definition 3.7,
with K = {0} (i.e. without making use of index k). This is the best possible value of b, which can be
seen by applying theorem 3.22(a) and using ‖(|φ〉 〈ψ|)‖q = ‖ψ‖p‖φ‖q.

Corollary 3.14 (Estimate matrix entries). Let A be EPSp(b, f). Then, given any indices i, j, the
value of the matrix entry Aij can be estimated to within additive error ε > 0, with probability less
than δ > 0 of exceeding the error bound, in average time O(log(δ−1)ε−2b2f).

Proof. By theorem 3.13 the dyad of computational basis vectors |j〉 〈i| is EHTp(1, log(N)). Note:
f ≥ log(N) in all cases (unless one is dealing with query complexity) since it takes O(log(N)) time to
even write down the indices i and j, which are log(N) bits long. By lemma 3.11, Aij = Tr(A |j〉 〈i|)
can be estimated in time O(log(δ−1)ε−2b2[f + log(N)]) = O(log(δ−1)ε−2b2f).

Theorem 3.15 (Density operators are EHT). Let σ be a density operator. Suppose that it is possible
to sample from the probability distribution P (n) = σnn in average time O(f) and, given i, j, to
compute σij in average time O(f). Then σ is EHT2(1, f).

Proof. This follows from plugging the probability distributions P (n) = σnn and Q(m) = σmm into
definition 3.7 and using the inequality |σmn| ≤

√
σmmσnn, which is satisfied by positive semidefinite

matrices.

3.6 Simulation of quantum circuits

3.6.1 Efficiently simulated states and operators

In this section we take up the case p = q = 2, which is relevant to quantum circuits, and list several
examples of EHT2(b, f) states and EPS2(b, f) operators where b is small and f ≤ polylog(N) where
N is the dimension of the system (i.e. N = 2n where n is the number of qubits). By theorem 3.8,
circuits made of such states and operators can be efficiently simulated. For example, the circuit
depicted in fig. 3.1 can be simulated in polylog(N) time. After providing several examples of such
states and operators, we discuss a few circuits that cannot be efficiently simulated using our technique.
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Figure 3.1: An example of the type of circuit that can be simulated in poly(n) time using the
techniques of this paper. The circuit is divided into four sections: the first section is considered to be
the initial state, the middle two sections are unitary matrices, and the last section is a projector.
The block labeled y = g(x) represents a classical computation step that outputs “yes” if the first and
second measurement operations result in values that are related by an arbitrary (but poly(n) time
computable) function g.

The initial states we are able to efficiently simulate include the computationally tractable (CT)
states of [VdN11]. We reproduce the definition here.11

Definition 3.16. A normalized state |ψ〉 of dimension N is called computationally tractable (CT)
if the following conditions hold:

(a) It is possible to sample in polylog(N) time with classical means from the probability distribution
P (i) = |ψi|2.

(b) Upon input of any i ∈ {0, . . . , N − 1}, the coefficient ψi can be computed in polylog(N) time on
a classical computer.

It follows immediately from theorem 3.13 that if |ψ〉 is a CT state then ρ = |ψ〉 〈ψ| is
EHT2(1, polylog(N)). For convenience we present here a brief list of examples of such states
from [VdN11] and refer the reader to their paper for details:

• Product states of qubits (we allow also qudits).

• Stabilizer states.

• States of the form |ψ〉 = 1√
N

∑N−1
x=0 eiθ(x) |x〉 where eiθ(x) for a given x can be computed in

polylog(N) time.

• Matrix product states of polynomial bond dimension.

• States obtained by applying a polynomial sized nearest-neighbor matchgate circuit to a compu-
tational basis state.

• States obtained by applying the quantum Fourier transform to a product state.

• The output of quantum circuits with logarithmically scaling tree-width acting on product input
states.

11 Their definition referred to qubits. We generalize slightly to the abstract case where the decomposition into
subsystems is not defined, only the total dimension of the space matters.
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We present a list of examples of EPS2(b, f) operators with b small and f ≤ polylog(N). All proofs
are in appendix 3.C.

• If A is EPSp(b, f) then I⊗· · ·⊗ I⊗A⊗ I⊗· · ·⊗ I is EPSp(b,max{f, log2(N)}) (corollary 3.37).
In other words, EPS operations on subsystems are EPS. The log2(N) is due to the amount of
time needed to convert indices of I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I to indices of A.

• Any operator A on a constant number of qubits or qudits is EPS2(Imax(A), 1) where Imax(A) =
‖Ā‖2 is the interference producing capacity of A. In other words, the simulation cost due to
such an operator is equal to the fourth power of its interference producing capacity (because of
the b4t term in (3.69)).

• If A is an M ×M matrix with maximum singular value bounded by 1 (e.g. a unitary, projector,
or POVM element) then Imax(A) ≤

√
M . This inequality is saturated when A is a unitary

with rows forming a basis mutually unbiased to the computational basis (e.g. a Hadamard or
Fourier transform).

• In terms of query complexity rather than time complexity, any operator A not depending on
an oracle is EPS2(Imax(A), 0) by theorem 3.22. Oracles themselves are EPS2(1, 1).

• Efficiently computable sparse matrices as defined in [VdN11] are EPSp(polylog(N),polylog(N))
(theorem 3.33). These include:

– Permutation matrices are EPSp(1, f) as long as the permutation and its inverse can be
computed in time O(f).

– Diagonal unitary matrices are EPSp(1, f) as long as the phases can be computed in time
O(f).

– Pauli matrices are EPSp(1, 1).

• Grover reflections I − 2(|+〉 〈+|)⊗n are EPS2(3, n) (theorem 3.38).

• The Haar wavelet transform on n qubits (definition 3.39) is EPS2(
√
n+ 1, n) (theorem 3.40).

• One dimensional projectors onto CT states are EPS2(1,polylog(N)) since CT dyads are
EHT2(1, polylog(N)) and EHT operators are EPS (theorem 3.9).

• Rank r projectors onto spaces defined by CT states are EPS2(r, polylog(N)) (by applying the
sum rule theorem 3.10(a) to the previous item).

• Block diagonal matrices where each block is EPSp(b, f) are EPSp(b, f), as long as matrix indices
can be converted to/from block indices in time O(f) (theorem 3.34).

• As a special case of block diagonal matrices, projectors of the form
∑
x |x〉 〈x|⊗ |φx〉 〈φx|, where

the |x〉 are computational basis states and each |φx〉 is a CT state, are EPS2(1, polylog(N)).
Example: given an even number of qubits, measure half of the qubits in the computational basis
to get x, measure the other half in the Fourier basis to get y, return true if y = g(x) for some
function g computable in polylog(N) time (corollary 3.36). In this example, |φx〉 = F |g(x)〉.
The measurement depicted in fig. 3.1 is of this form.

3.6.2 Simulation techniques

As a matter of convenience, we present a theorem that is essentially a direct corollary of theorem 3.8,
but written in the language of quantum circuits.
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Theorem 3.17. Consider a quantum circuit using states of dimension N (i.e. log2(N) qubits or
logd(N) qudits). Let |ψ〉 be a computationally tractable (CT) state. For t ∈ {1, . . . , T} let U (t) be
an EPS2(bt, polylog(N)) unitary and let M be an EPS2(bM , polylog(N)) Hermitian observable. It is
possible, with probability less than δ > 0 of exceeding the error bound, to estimate

〈
ψ
∣∣∣U (1)† · · ·U (T )†MU (T ) · · ·U (1)

∣∣∣ψ
〉

(3.68)

to within additive error ε > 0 in average time

O

(
T log(δ−1)ε−2polylog(N)b2M

T∏

t=1

b4t

)
. (3.69)

In particular, if bM ,
∏
t bt, and T are polylog(N), and if δ and ε are constant, then the simulation

time is polylog(N) on average.

Note that in (3.69) each unitary U (t) incurs a cost of b4t rather than b2t since it appears twice
in (3.68). If M is a rank one projector onto a CT state, M = |φ〉 〈φ|, then it is much more efficient
to compute (3.68) as the absolute square of

Tr{|ψ〉 〈φ|U (T ) · · ·U (1)}. (3.70)

Since |ψ〉 〈φ| is EHT2(1,polylog(N)), and since each unitary only occurs once, theorem 3.8 gives that
this expression can be estimated in average time

O

(
T log(δ−1)ε−2polylog(N)

T∏

t=1

b2t

)
, (3.71)

which is much better than (3.69). If M is a low rank projector, the same trick can be used by
decomposing M as the sum of rank one projectors and computing each resulting term individually.
The complexity of such a technique will scale proportional to the rank of M .

Theorem 3.17 is just an application of theorem 3.8 with p = q = 2. One may wonder whether
other values of p, q would lead to a lower simulation cost. Ignore for the moment the efficient sampling
conditions (c) and (d) of definition 3.6 and definition 3.7. When estimating (3.68), the optimal
probability distributions give (by theorem 3.22)

b : = bψbU(1) · · · bU(T )bMbU(T ) · · · bU(1)bψ (3.72)

= ‖ψ‖p‖Ū (1)†‖q · · · ‖Ū (T )†‖q‖M̄‖q‖Ū (T )‖q · · · ‖Ū (1)‖q‖ψ‖q. (3.73)

This achieves its minimum value at p = q = 2, since

b = ‖ψ‖p‖ψ‖q‖Ū (1)‖p‖Ū (1)‖q · · · ‖Ū (T )‖p‖Ū (T )‖q
(
‖M̄‖p‖M̄‖q

)1/2 (using ‖A†‖q = ‖A‖p) (3.74)

≥ 〈ψ|ψ〉 ‖Ū (1)‖p‖Ū (1)‖q · · · ‖Ū (T )‖p‖Ū (T )‖q
(
‖M̄‖p‖M̄‖q

)1/2 (Hölder’s inequality) (3.75)

≥ 〈ψ|ψ〉 ‖Ū (1)‖22 · · · ‖Ū (T )‖22‖M̄‖2 (Riesz–Thorin theorem)
(3.76)

= ‖ψ‖2‖Ū (1)†‖2 · · · ‖Ū (T )†‖2‖M̄‖2‖Ū (T )‖2 · · · ‖Ū (1)‖2‖ψ‖2. (3.77)

On the other hand, when estimating an expression of the form (3.70), each unitary is no longer
repeated twice and Riesz–Thorin cannot be applied. In this case the minimum value of b does not
necessarily occur at p = 2.

Certain algorithms, such as Shor’s algorithm, consist of a quantum circuit terminating in a many-
outcome measurement (e.g. measurement in the computational basis of several different qubits) which
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is then post-processed by a classical computer to produce a final result. This does not immediately
fit into our scheme of estimating expectation values. However, in the case where the final result
is a two-outcome yes/no answer (e.g. “does N have a prime factor in the range [a, b]”), the final
measurement and classical post-processing can be combined into a single collective projector or
POVM element as follows. Suppose the final state is measured using a POVM {Fi}. A classical
post-processing step then inspects the measurement outcome i and returns “yes” or “no”. Denote by
R the set of measurement outcomes that will result in “yes”. The classical post-processing can be
absorbed into the measurement, resulting in the POVM element F ′ =

∑
i∈R Fi. The expectation

value of F ′ gives the probability that a measurement of {Fi} would yield “yes” after post-processing.
In some cases F ′ may be efficiently simulated, a (somewhat contrived) example being the final

stage of the circuit of fig. 3.1. Note that this example involves a Fourier transform, which by itself
cannot be efficiently simulated by our technique since it has large interference producing capacity.
However, when the Fourier transform is followed by the particular classical post-processing depicted
in fig. 3.1, the resulting composite operator can be efficiently simulated (corollary 3.36). Shor’s
algorithm also has a Fourier transform followed by classical post-processing, however in that case the
composite operator (Fourier transform followed by post-processing) has large interference producing
capacity and so cannot be efficiently simulated (by our algorithm).

3.6.3 Circuits that our technique can’t efficiently simulate

Many examples of efficiently simulatable circuits can be constructed, but it is probably more
enlightening to instead discuss examples of circuits that cannot be efficiently simulated using our
technique. Since the efficiency of our technique depends upon choice of basis and on choice of
representation (see section 3.7.1), a circuit which our technique cannot simulate efficiently in one
basis may be efficiently simulatable in another basis. In this section we choose to focus only on the
computational basis. That being said, most of the examples in this section have been proved (relative
to an oracle) to have no efficient classical solution.

We cannot efficiently simulate Shor’s algorithm. The reason for this is that the Fourier transform
has high interference producing capacity: the Fourier transform F on n qubits has Imax(F ) = 2n/2.
Replacing the Fourier transform by the Haar wavelet transform (fig. 3.2) yields a circuit that
can be efficiently simulated, since the Haar transform has low interference producing capacity,
Imax(Gn) =

√
n+ 1. Note that this circuit no longer factors numbers (and probably does nothing at

all useful). The Fourier and Haar transforms play similar roles in classical signal processing, with the
latter providing spatially localized rather than global information for the high frequency components.
The fact that replacing the Fourier transform enables efficient classical simulation points to the
Fourier transform as being the source of the quantum speedup in Shor’s algorithm (for a contrasting
point of view, see [ALM07,YS07]).

Deutsch–Jozsa provides an oracle relative to which deterministic quantum computation is more
powerful than deterministic classical computation. Our algorithm can efficiently simulate the Deutsch–
Jozsa algorithm, but not deterministically.12 The Deutsch–Jozsa algorithm consists of an initial
CT state |+〉⊗n ⊗ |−〉, acted upon by an oracle

∑
xy |x〉 〈x| ⊗ |y + g(x)〉 〈y|, followed by a rank-one

projective measurement onto the state |+〉⊗n⊗|−〉. The initial state is EHT2(1, n) and the operators
are EPS2(1, n), so we can efficiently simulate this algorithm. However, the simulation will always
have a small chance of error due to the δ in theorem 3.17.

Our simulation algorithm performs very poorly when applied to Grover’s algorithm. Each iteration
of Grover’s algorithm consists of an oracle query followed by a Grover reflection. These operations
have low interference producing capacity: 1 for the oracle and just under 3 for the Grover reflection.
However, our algorithm is exponentially slow in the circuit length, due to the

∏
t b

4
t factor in (3.69).

Since the Grover reflection is used Θ(
√
N) times, the simulation would run in time exp(Θ(

√
N)).

12 This was discussed in [VdN11], which our paper extends. However, we mention it here for completeness.
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Figure 3.2: (a) A depiction of the decisional version of Shor’s algorithm, which outputs “yes” if
there is a prime factor within some given range. (b) The Haar wavelet transform (definition 3.39)
plays a similar role as the Fourier transform in classical signal processing. However, substituting the
Haar transform for the Fourier transform in Shor’s algorithm yields a circuit that can be efficiently
simulated on a classical computer. Note that the resulting circuit won’t factor numbers, and in fact
probably has no practical use.

Even though each iteration of Grover’s algorithm produces small interference, the total interference
of the whole circuit, by definition 3.3, is exp(Θ(

√
N)).

In [CCD+03] a quantum random walk is presented that provides an exponential speedup over any
possible classical algorithm for the graph traversal problem. The walk is carried out by evolving the
initial state with a Hamiltonian that is defined in terms of an oracle. We cannot efficiently simulate this
algorithm for the same reason that we cannot efficiently simulate Grover: the runtime of the quantum
algorithm increases with the problem size, and our simulation must pay an exponentially large penalty
for this due to the

∏
t b

4
t factor in (3.69). On the other hand, short time/low energy Hamiltonian

evolutions can be efficiently simulated by our technique. In particular, theorem 3.10(c) gives that if
H is EPSp(b, f) then eiHt is EPSp(ebt, btf). In terms of query complexity the Hamiltonian in the
algorithm of [CCD+03] is EPS2(O(1), 1), so we could feasibly simulate eiHt for small t. However,
their algorithm has t = Θ(n4), so our simulation would have query complexity eΘ(n4), making it
unfeasibly slow.

3.7 Applications and discussion

3.7.1 Wigner representation

An N × N matrix can also be viewed as an N2 dimensional vector, so we can write for instance
〈M |ρ〉 in place of Tr{Mρ}. Superoperators become N2×N2 matrices in this representation, and we
can write 〈M |V U |ρ〉 = Tr{MV UρU†V †}. Simulating a quantum circuit using this representation
offers an alternative to the customary representation that was the focus of section 3.6.

Any basis can be used (even ones that are not orthonormal), although some choices of basis may
yield more efficient simulation. One notable choice is given by the discrete Wigner representation,
which is only defined for qudits of odd dimension. We will not describe the details here but refer the
reader to [VFGE12,ME12] in which it is shown that in the discrete Wigner representation stabilizer
states become probability distributions and Clifford operations become permutation matrices.

It was shown independently in [VWFE13,ME12] that when operations in the Wigner representation
are given by nonnegative matrices, such matrices are stochastic and therefore can be efficiently
simulated. Our algorithm, taking p = ∞ and q = 1, extends this result by also allowing states
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and operations in which the Wigner representation contains a small quantity of negative values,
although ours is weaker in that it only computes expectation values rather than allowing sampling
of a many-outcome measurement. With q = 1 rather than q = 2, the difficulty of simulating an
operation is given not by Imax(A) = ‖Ā‖2 but rather by ‖Ā‖1 = ‖A‖1, the maximum absolute
column sum. In cases where the matrix in the Wigner representation is nonnegative, the matrix will
be left-stochastic and ‖A‖1 = 1, such matrices will not increase the number of samples needed. If
there are some negative values then ‖A‖1 will be larger.

After the present work was completed, the quantity log‖ρ‖1 was investigated in [VMGE14].
This quantity was termed “mana” and was shown to be monotone under Clifford operations, and
to be monotone on average under stabilizer measurements, thus providing bounds on magic state
distillation by Clifford circuits. Given the results of the present paper, it should perhaps make sense
to extend the concept of mana also to quantum operations, defining their mana to be log‖A‖1. Then
Clifford operations have zero mana and in general the following monotonicity relation is satisfied:

log‖Aρ‖1 ≤ log(‖A‖1‖ρ‖1) = log‖A‖1 + log‖ρ‖1. (3.78)

So log‖A‖1, which is the Wigner representation analogue of the log of interference producing capacity,
bounds the amount by which the operator A may increase the mana of a state. For each A there
will be some ρ that saturates this inequality (by the definition of operator norm), but it is not clear
whether this would correspond to a physical state.

Stated in this language, theorem 3.8, applied in the Wigner representation, gives that quantum
circuits may be efficiently simulated classically in time polynomial in ‖M‖∞ (where M is the
final measurement) and exponential in the sum of the mana of the initial state and the mana of
each operation. Specifically, write 〈M |V U |ρ〉 = Tr{|ρ〉 〈M |V U}. Then, ignoring for the moment
conditions (c)-(d) of definition 3.6 and (c)-(d) of definition 3.7, we have (by theorem 3.22) that
|ρ〉 〈M | is EHT∞(‖ρ‖1‖M‖∞, f) and U is EPS∞(‖U‖1, f) (similarly for V ). So by theorem 3.8
this can be simulated in time

O(log(δ−1)ε−2‖M‖∞‖U‖1‖V ‖1‖ρ‖1f). (3.79)

This complements the result of [VMGE14] which showed mana to be a necessary resource for magic
state distillation but did not show that circuits of low total mana have no quantum speedup (although
the zero mana case was treated in [VWFE13,ME12]).

3.7.2 Communication complexity

Consider a scenario in which two parties, Alice and Bob, are to cooperatively evaluate a boolean
function. Specifically, suppose that Alice receives input x, Bob receives input y, and they are to
evaluate g(x, y) where the function g : X × Y → {0, 1} is known to the two parties ahead of time.
They must provide the correct answer with probability at least 2/3. For non-trivial functions this will
require communication, which can be either quantum or classical. The communication complexity
of g is the number of bits of communication required by the optimal protocol, with no regard for
the amount of time Alice and Bob spend on local computations. For some problems quantum
communication is exponentially more efficient than classical communication [RK11].

Consider a quantum communication protocol as depicted by fig. 3.3. The initial state, denoted |ψ〉,
is a pure (but possibly entangled) state on three subsystems HA ⊗HB ⊗HC . Subsystems HA and
HB are owned by Alice and Bob respectively, and subsystem HC is passed between Alice and Bob
through a noiseless quantum channel for each round of communication. Alice begins by performing
a unitary operation A(1,x), which can depend on her input x, on subsystems HA ⊗HC . She then
sends the HC subsystem to Bob, who performs a unitary operation B(2,y), which can depend on his
input y, on subsystems HB ⊗HC . Bob sends HC back to Alice who then performs A(3,x) and so
on. Finally, the last party (say, Bob) performs a two outcome projective (or POVM) measurement
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Figure 3.3: A quantum communication protocol. The expectation value of the final measurement is
given by (3.80).

{M (y), I −M (y)}, which can depend on y, on subsystems HB ⊗HC and reports the outcome. The
expectation value of the final measurement is given by

〈
ψ
∣∣∣A(1,x)†B(2,y)†A(3,x)† · · ·A(T,x)†M (y)A(T,x) · · ·A(3,x)B(2,y)A(1,x)

∣∣∣ψ
〉

(3.80)

and must be ≤ 1/3 if g(x, y) = 0 and ≥ 2/3 if g(x, y) = 1. The communication complexity of the
protocol is the number of qubits transmitted, T log(dim(HC)) where T is the number of rounds of
communication. The dimensionality of the subsystems HA and HB is not taken into consideration.

The algorithm of this paper can be adapted to provide classical communication simulations of
quantum communication protocols, in the case where the quantum protocols are built using operators
having low interference producing capacity, and making a certain assumption regarding the initial
state |ψ〉. Since the expectation value of the final measurement in the quantum protocol will be either
≤ 1/3 or ≥ 2/3, a classical simulation of the quantum protocol can with probability ≥ 2/3 determine
g(x, y) if it can, with chance of error δ ≤ 1/3, estimate the expectation value of the quantum protocol
to within additive error ε < 1/6. This is exactly the type of estimation provided by the algorithm of
this paper, we need only adapt it to the communication scenario.

The algorithm presented in section 3.4.4 involves computing O(b2max) path samples,13 each of
which require evaluation of a left-to-right or a right-to-left Markov chain. Crucially, each transition
operator in these chains is defined solely in terms of a single operator of (3.80). Therefore, each
transition can be computed by Alice alone (for the A(t,x) operators) or by Bob alone (for the B(t,y)

and M (y) operators). The state space of the Markov chains consists of indices corresponding to
computational basis states of HA ⊗HB ⊗HC , so the indices can be thought of as triples (iA, iB , iC)
of indices over HA, HB, and HC . Since Alice’s operators A(t,x) act only on subsystems HA ⊗HC ,
the corresponding transition operators in the Markov chain involve only indices iA and iC . Similarly,
Bob’s transition operators involve only iB and iC . Therefore Alice and Bob need to communicate
only the index iC for each transition of the Markov chain.

Also needed is selection of the initial index according to the probability distribution P (iA, iB , iC) =

|〈iA, iB , iC |ψ〉|2 (with Alice getting (iA, iC) and Bob getting iB), as well as evaluation of 〈iA, iB , iC |ψ〉
for a given (iA, iB , iC) triple (where Alice knows (iA, iC) and Bob knows iB). If the initial state is a
product state, |ψ〉 = |ψAC〉 ⊗ |ψB〉, these tasks are easily accomplished using no communication. In
fact, even if |ψ〉 is entangled between Alice and Bob these two tasks can in some cases be accomplished
using only a small amount of communication. Alice and Bob both know |ψ〉 (since it does not depend
on x or y), so they can individually sample from P (iA, iB , iC). If Alice and Bob are granted access
to shared randomness (a.k.a. public coins), they can sample from P (iA, iB , iC) in a synchronous
way (i.e. they both get the same outcome). Computation of 〈iA, iB , iC |ψ〉 for a given (iA, iB , iC)

13 Specifically, O(log(δ−1)ε−2b2max) samples are needed. However, in order to achieve the goal of guessing g(x, y)
with probability ≥ 2/3 it suffices to set constant δ < 1/3 and ε < 1/6.
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triple, with (iA, iC) known to Alice and iB known to Bob, is trickier and how much communication
is needed depends on |ψ〉. For example, let HA = HA′ ⊗HA′′ and HB = HB′ ⊗HB′′ and consider
an initial state of the form

|ψ〉 = |ψA′〉 ⊗ |ψB′〉 ⊗ |ψC〉 ⊗
∑

i

αi |i〉A′′ ⊗ |i〉B′′ (3.81)

with |i〉A′′ and |i〉B′′ denoting computational basis vectors. This is the most common type of initial
state for quantum protocols that make use of shared entanglement. Then

〈iA, iB , iC |ψ〉 = 〈iA′ |ψA′〉 〈iB′ |ψB′〉 〈iC |ψC〉αiA′′ δ(iA′′ , iB′′) (3.82)

where δ is the Kronecker delta. This can be computed using shared randomness and O(1) communi-
cation by making use of a bounded error protocol for testing equality of iA′′ and iB′′ (example 3.13
of [KN06]).

Since each unitary appears twice in (3.80), evaluation of the entire Markov chain is accomplished
with twice as much communication as the classical protocol, or 2T log(dim(HC)) bits. The algorithm
also requires computing the amplitude associated with the path, as well as the probability of the path.
However, this requires only transmission of O(T ) scalar quantities from Alice to Bob, using O(T )
bits of communication.14 The total classical communication complexity of this simulation protocol is
therefore O(b2maxT log[dim(HC)]), a factor O(b2max) greater than that of the quantum protocol. Using
the optimal probability distributions defined in appendix 3.A, bmax is upper bounded by the product
of the interference producing capacities of the operators in (3.80). The communication complexity of
the classical simulation is then

O
(
T log[dim(HC)] max

x,y

{
‖Ā(1,x)‖42 · ‖B̄(2,y)‖42 · ‖Ā(3,x)‖42 · · · ‖Ā(T,x)‖42 · ‖M̄ (y)‖22

})
. (3.83)

The consequence of this construction is that any quantum communication protocol exhibiting
superpolynomial advantage in communication complexity over any classical protocol must have
a superpolynomial value of bmax (i.e. the product of the interference producing capacities of the
quantum operators must be high) or must make use of an initial state not of the form (3.81). There
is, however, an interesting caveat to this claim. Due to the fact that each unitary, as well as the initial
state, appears twice in (3.80), our classical simulation will require twice as many communication
rounds as the quantum protocol.15 Our technique therefore does not apply if one limits the number of
rounds. For example, the quantum protocol for the Perm-Invariance problem described in [Mon11]
has bmax = 1 yet is exponentially more efficient than any one-round classical protocol.

There is a way to avoid the doubling of the number of rounds of communication, but at a
price. Consider a one-round quantum protocol in which Alice sends a state |ψ〉 and Bob measures
a projector (or POVM element) M . The expectation value is 〈ψ|M |ψ〉 = Tr{|ψ〉 〈ψ|M}. As
described in the previous subsection, the state |ψ〉 〈ψ| and operator M can be vectorized to give
〈ρ|M〉 = Tr{|ψ〉 〈ψ|M}. By taking p = 1 and q = ∞ instead of p = q = 2 our algorithm
can estimate 〈ρ|M〉 using only a left-to-right Markov chain, thus requiring only a single round
of communication, from Alice to Bob. However, since p = 1 and q = ∞, the number of bits
communicated is O(‖ρ‖21‖M‖2∞n) with n being the number of qubits in |ψ〉. The reason we
can’t efficiently simulate the quantum protocol of [Mon11] using this technique is that ‖ρ‖1 is
exponentially large. Interestingly, [KNR95] provides a one-round protocol that can estimate 〈ρ|M〉
using O(‖ρ‖22‖M‖22) bits of classical communication. However, this again fails to provide an efficient
simulation since ‖M‖2 is exponentially large.

14 Actually a careful look shows that only O(1) communication is needed. Alice can locally multiply her transition
probabilities and the amplitudes for her operators for the given path and report these O(1) values to Bob who is then
able to complete the computation.

15 Note that independent evaluations of the Markov chain can be run in parallel, otherwise the number of rounds
would scale as O(b2max).
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3.7.3 Continuity of I and Imax

Our measures Imax of definition 3.5 (which we have related to quantum speedup) and I of definition 3.3
(which we have conjectured to be related to quantum speedup) are continuous as a function of the
states and operators of a circuit. To our knowledge, this is the first continuous quantity that has
been identified as being a necessary resource for quantum speedup, other resources such as Schmidt
rank [Vid03] or tree width [MS08,Joz06] being discrete valued.

An argument was put forth in [Nes12] as to why most continuous quantities could not be considered
as a necessary resource for quantum speedup. Although their argument focuses on functions of the
state vector, such as entanglement entropy, rather than of the operators, it is still worthwhile to
examine whether it is applicable to the present work. We paraphrase their argument here, modifying
it slightly to fit the circuit paradigm that we have been using in this paper. Consider a quantum
circuit with initial state |0〉⊗n, followed by several unitaries, terminated by a final measurement
having expectation value v. Add a control to all of the operators in the circuit: I⊗|0〉 〈0|+U ⊗|1〉 〈1|
in place of U for each unitary and similarly for the final measurement. All operators are controlled
by an ancillary qubit initially in the state

√
1− ε |0〉+

√
ε |1〉. By repeating execution of the circuit

O(ε−2) times, the value of v can be recovered to high accuracy. However, by setting ε to a sufficiently
low value, the state at all times during the computation will be arbitrarily close to |0〉⊗n+1, and thus
will have arbitrarily low entanglement. The most commonly used entanglement measures take values
that depend polynomially on ε, so entanglement can be made quite low without O(ε−2) growing to
an unfeasible magnitude. As a consequence, it is not possible to claim without qualification that
entanglement is necessary for quantum speedup.

This construction has no effect on the interference producing capacity of the operators of the
circuit since Imax(I⊗|0〉 〈0|+U ⊗|1〉 〈1|) = Imax(U). For this reason, our main result regarding Imax
as a necessary resource for quantum speedup is immune to the above argument. On the other hand,
the interference measure I of definition 3.3, which is the subject of the conjectures of section 3.8, is
immune to this argument for a different reason. The value of I can be exponentially high in the
number of qubits or number of unitaries of a circuit. In order to make I small, ε would have to be
exponentially small, in turn requiring an exponentially large number of repetitions of the circuit. So
the construction of [Nes12] is not able to significantly lower the interference of a circuit without also
losing the quantum speedup.

3.7.4 Connection to decoherence functional
There is a close connection between the interference I of definition 3.3 and the decoherence functional
introduced by Gell-Mann and Hartle.16 The latter represents an extension of the Born rule so as
to be able to define probabilities for a sequence of events in a closed quantum system. Consider a
family of histories corresponding to projection onto the computational basis at each step (i.e. after
the initial state and after each unitary) of a quantum circuit Tr{U (1)† · · ·U (T )†MU (T ) · · ·U (1)ρ}. In
this case the decoherence functional is defined as

D(j;k) = Tr[MW (j)ρW †(k)], (3.84)

where ρ is the initial state, M is a projector, and

W (j) = |jT 〉 〈jT |UT · · · |j2〉 〈j2|U (2) |j1〉 〈j1|U (1) |j0〉 〈j0| . (3.85)

It is convenient to think of D(j;k) as a matrix with rows labeled by j and columns by k, and then it
is not difficult to show that

∑

j

∑

k

D(j;k) = Tr{U (1)† · · ·U (T )†MU (T ) · · ·U (1)ρ}. (3.86)

16See [GMH93]. Here we use the notation of Chs. 7, 8 and 10 of [Gri03], which is more convenient for our purposes
because it employs the Schrödinger rather than the Heisenberg representation.
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If the consistency condition
D(j;k) = 0 whenever j 6= k (3.87)

is satisfied, then each diagonal element D(j; j) can be interpreted (up to normalization) as the
probability of the history corresponding to j occurring. The sum of these diagonal elements is then
equal to the expectation value of the final observable, the right side of (3.86), since the off diagonal
terms vanish.

It is straightforward to show that I of definition 3.3 is equal to

I
(
U (1)†, . . . , U (T )†,M,U (T ), . . . , U (1), ρ

)
=
∑

j

∑

k

|D(j;k)| . (3.88)

When the consistency condition (3.87) is satisfied, this will be equal to
∑

j D(j; j) (since the diagonal
entries are always positive), which in turn is equal to the right hand side of (3.86). In general, (3.88)
gives a measure of how badly the consistency condition is violated.

3.8 Conjectures

We have shown that quantum speedup requires circuit elements with a large interference producing
capacity. In this section we formally state our conjecture that low interference (rather than low
interference producing capacity) is sufficient to ensure efficient simulation of a quantum circuit. In
general we are interested in circuits of arbitrary length, but for concreteness consider the task of
estimating sums of the form

〈
ψ
∣∣U†MU

∣∣ψ
〉

=
∑

ijkl

V (i, j, k, l), (3.89)

V (i, j, k, l) = ψ∗i U
†
ijMjkUklψl. (3.90)

As discussed in section 3.3, this sum can be estimated by considering a number of randomly chosen
paths π = (i, j, k, l). If these paths are chosen according to the optimal probability distribution
Ropt(π) of (3.10) then the number of samples required to estimate (3.89) to within error ε (with
probability δ of exceeding this error bound) is O(log(δ−1)ε−2I2) where I =

〈
ψ̄
∣∣Ū†M̄Ū

∣∣ψ̄
〉
is the

interference of the circuit as given by definition 3.3. The difficulty with this strategy is that we do not
know how to efficiently sample paths according to the distribution Ropt(π), or anything sufficiently
close to it. In other words, we do not have a strategy for finding the most relevant paths. However,
we conjecture that there is a way.

Loosely speaking, we conjecture a quantum circuit can be simulated in time poly(log(δ−1)ε−1I)
as long as the initial state and operators meet some computational tractability conditions, analogous
to conditions (c) and (d) of definitions 3.6 and 3.7. Exactly what tractability conditions should
be required is difficult to know ahead of time for the following reason. In sections 3.3 and 3.4 a
simulation algorithm was developed, which required certain tasks to be performed involving the
initial state and the operators of the circuit being simulated. The need to efficiently perform these
tasks led directly to the definition of conditions (c) and (d). Now we conjecture a better algorithm,
whose specific structure is not known ahead of time. Not knowing the specifics of this conjectured
algorithm, it is not clear what should be required in place of conditions (c) and (d). The intuition is
that we assume any necessary task involving any individual operator in the circuit can be efficiently
performed, but we make no assumption regarding the interactions between several operators.

This can be made more precise. Section 3.5.3 (on query complexity) and section 3.7.2 (on
communication complexity) each provided a framework in which the computational tractability
conditions (c) and (d) were not relevant. We could use either of these to form a conjecture that
avoids the need to state similar conditions. Of these two, communication complexity is representative
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of a certain algorithmic structure. Consider algorithms that involve dealing with the elements of
a circuit one at a time. For instance, when estimating (3.89) one could imagine carrying out some
calculations involving |ψ〉, making notes of the result, carrying out further calculations involving
U , and so on. The time complexity of such an algorithm is lower bounded by the amount of notes
taken and the number of times attention is shifted from one circuit element to another. This can be
quantified by imagining that each of |ψ〉, U , and M are stored in separate rooms, and considering
how many notes need to be carried back and forth between the rooms by somebody who seeks to
estimate (3.89). Equivalently, stated in terms of communication complexity, imagine that Alice has
|ψ〉, Bob has U , and Charlie has M . How much communication is needed in order to estimate (3.89)?
We conjecture that the amount of communication needed is polynomial in the interference of the
circuit:

Conjecture 3.18. Suppose that Alice has a classical description of a vector |ψ〉 of dimension N ,
Bob has a description of an N ×N POVM element M , and T other parties have descriptions of
N × N unitary matrices U (1), . . . , U (T ). Then, with probability less than δ of exceeding the error
bound, the value of 〈

ψ
∣∣∣U (1)† · · ·U (T )†MU (T ) · · ·U (1)

∣∣∣ψ
〉

(3.91)

can be estimated to within additive error ε using poly(log(δ−1)ε−1 max{1, I} log(N)) bits of classical
communication where I is the interference of (3.91) as given by definition 3.3.

The reader may worry that this communication scenario has little bearing on the problem of
simulating quantum circuits, however it is expected that any proof in the positive of this conjecture
will be adaptable into an algorithm that can be used in the computation context. Indeed, the
Markov chain technique of section 3.4 was first developed as as solution to a problem resembling
conjecture 3.18.

We have been unable to prove this conjecture even for the simple case where there are no unitary
operations and the goal is to estimate the expectation value 〈ψ|M |ψ〉. We present this simplified
case formally, as it deserves some discussion.

Conjecture 3.19. Conjecture 3.18 holds in the case T = 0. In other words, suppose that Alice has a
classical description of a vector |ψ〉 of dimension N and Bob has a classical description of an N ×N
POVM element M . Then, with probability less than δ of exceeding the error bound, the value 〈ψ|M |ψ〉
can be estimated to within additive error ε using poly

(
log(δ−1)ε−1 max{1, I} log(N)

)
bits of classical

communication where I =
〈
ψ̄
∣∣M̄
∣∣ψ̄
〉
is the interference of 〈ψ|M |ψ〉 as given by definition 3.3.

Conjecture 3.19, being weaker than conjecture 3.18, should be easier to prove true. However, it
would probably be very difficult to prove false since a proof that estimating 〈ψ|M |ψ〉 requires a large
amount of classical communication in the general case (not assuming low interference) remained
open for 11 years [RK11].

Conjecture 3.19 would be false if only one round of communication was allowed, from Alice to
Bob. In [Mon11] the Perm-Invariance problem was defined and shown to be solved efficiently by a
one-round quantum protocol, however no efficient one-round classical protocol exists. The quantum
protocol has Bob measuring a POVM element M on a state |ψ〉 sent by Alice and this protocol is
low interference, I =

〈
ψ̄
∣∣M̄
∣∣ψ̄
〉
≤ 1. However, there can be no efficient one-round classical protocol

for estimating 〈ψ|M |ψ〉, since such a protocol would efficiently solve Perm-Invariance. This does
not provide a counterexample to conjecture 3.19 since we allow multiple rounds of communication,
and there is indeed an efficient classical two round protocol, which can be constructed using the
technique of section 3.7.2.

A potential problem with conjecture 3.18 is that the unitary portion of the circuit could create
very large interference which could be masked by the final measurement. For example, consider the
initial state |ψ〉 = |0〉⊗n, acted upon by an arbitrary circuit involving all but the first qubit, followed
by measurement of the observable M = |1〉 〈1| ⊗ I⊗n−1. For this circuit I = 0 so conjecture 3.18
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says the expectation value can be computed in poly(log(δ−1)ε−1n) time, as indeed it can in this
case. However, it seems there may be similar situations in which I is small because of the final
measurement, but the circuit is nevertheless difficult to simulate. For this reason we provide an
alternate definition that quantifies the interference just before the final measurement, computed by
substituting M = I in definition 3.3. This will be used to form a weaker conjecture.

Definition 3.20. The interference of a quantum circuit without a measurement is

J (U (T ), . . . , U (1), ρ) = Tr
{
Ū (T ) · · · Ū (1)ρ̄Ū (1)† · · · Ū (T )†

}
. (3.92)

In other words, J is the amount by which normalization is spoiled when destructive interference
is turned into constructive interference by means of the absolute value applied to each path. This is
nondecreasing in time,

J (U (T ), . . . , U (1), ρ) ≥ J (U (T−1), . . . , U (1), ρ) (3.93)

and J = 1 if all of the unitaries are permutation matrices as in a classical computation. We conjecture
that a circuit can be efficiently simulated when J is small. Since J doesn’t see the final measurement
M , we need an extra constraint. We require M to be a projector diagonal in the computational basis.

Conjecture 3.21. Suppose that Alice has a classical description of a vector |ψ〉 of dimension N ,
Bob has a description of an N ×N projector M that is diagonal in the computational basis, and T
other parties have descriptions of N ×N unitary matrices U (1), . . . , U (T ). Then, with probability less
than δ of exceeding the error bound, the value of

〈
ψ
∣∣∣U (1)† · · ·U (T )†MU (T ) · · ·U (1)

∣∣∣ψ
〉

(3.94)

can be estimated to within additive error ε using poly(log(δ−1)ε−1J log(N)) bits of classical com-
munication where J = J (U (T ), . . . , U (1), |ψ〉 〈ψ|) is the interference of (3.94) just before the final
measurement, as given by definition 3.20.

3.9 Summary and open problems
We have provided an algorithm for efficiently simulating quantum circuits in which each operator
has low interference producing capacity. Therefore, interference producing capacity is identified
as a resource necessary for quantum speedup. The runtime of the simulation is quadratic in the
interference producing capacities of each operator, so it is typically exponentially slow in the length
of the circuit. However, for constant length circuits making use of operators with low interference
producing capacity (many such operators are listed in section 3.6), the simulation runs in time
polynomial in the number of qubits.

In general, our technique is able to estimate expressions of the form 〈ψ|A · · ·Z|φ〉, of which
quantum circuits 〈ψ|U (1)† · · ·U (T )†MU (T ) · · ·U (1)|ψ〉 are a special case, in time proportional to
‖ψ‖2p‖Ā‖2q · · · ‖Z̄‖2q‖φ‖2q for any 1/p+1/q = 1 where a bar over a vector or operator denotes entrywise
absolute value in the computational basis, and where ‖·‖p denotes the `p-norm for vectors and the
induced norm for operators. The choice p = q = 2 is most relevant for quantum mechanics, and ‖Ā‖2
gives the interference producing capacity of A. The technique was also generalized to expressions of
the form Tr{A · · ·Zσ}.

We formalized the conditions necessary for efficient simulation by introducing two definitions: EHT
for the initial state σ and EPS for the operators A, . . . , Z. These definitions consist of requirements
having to do with the number of samples needed as well as requirements having to do with efficient
computability. The latter requirements can for the most part be ignored if one is concerned with
query complexity or communication complexity rather than time complexity. A wide range of initial
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states and operators are EHT or EPS; many examples were listed in section 3.6. In addition to
discussing circuits which can be efficiently simulated, we gave several examples of circuits which we
cannot efficiently simulate, and explained why.

The choice p = q = 2 makes the most sense for simulating expressions of the form
〈ψ|U†V †MV U |ψ〉. However, using the Wigner representation this expression can also be writ-
ten as 〈M |V U |ρ〉, and here the choice p =∞ and q = 1 works well, allowing efficient simulation of
circuits that consist mainly of Clifford operations. We showed how our simulation technique can
be applied to communication problems, with the conclusion that there can be no superpolynomial
advantage of quantum communication over classical communication unless the quantum protocol
uses operations with high interference producing capacity. Curiously, this result does not apply to
one-round communication, since our simulation requires doubling the number of rounds. And indeed,
there is an example of a one-round quantum protocol with low interference producing capacity which
is exponentially more efficient than any one-round classical protocol.

Finally, we would like to suggest three open questions:

1) Can it be shown that interference, rather than interference producing capacity, is necessary for
quantum speedup? In section 3.8 we formalized a series of conjectures on this topic, using the
framework of communication complexity.

2) While we have shown interference producing capacity to be a necessary resource for quantum
speedup, it is also fruitful to investigate sufficient resources for quantum speedup. For exam-
ple [BaH10], building on the work of [Aar10], showed that any operator U having the property
that maxij |Uij | is sufficiently small can be used to exhibit exponential quantum speedup. Can the
gap between necessary (e.g. our result) and the sufficient (e.g. [BaH10]) conditions for quantum
speedup be narrowed?

3) Can our technique be combined with existing Monte Carlo or other techniques to provide an
improved simulation algorithm for systems of physical interest? Our algorithm in its present form
is not likely to be more efficient than existing techniques for such problems.
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3.A Generalized singular vectors

The goal of this appendix is to determine the minimum value of b such that a given operator A is
EPSp(b, f) and bounds on b such that an operator σ is EHTp(b, f). We will show that conditions (a)-
(b) of definition 3.6 require b ≥ ‖Ā‖q and will construct probability distributions that satisfy this with
equality. Whether these also satisfy conditions (c)-(d) of definition 3.6 needs to be determined on a
case by case basis. Note that when p = q = 2 we have ‖Ā‖2 = Imax(A), the interference producing
capacity of A. The end result of this appendix is the following theorem.17

Theorem 3.22. Let A and σ be matrices, p, q ∈ [1,∞], and 1/p+ 1/q = 1. Then

(a) It is not possible to satisfy conditions (a)-(b) of definition 3.6 unless b ≥ ‖Ā‖q. The same goes
for (a) and (b) of definition 3.7 since they are stricter (i.e. b ≥ ‖σ̄‖q).

17 In the case p = q = 2, claims (a) and (b) of theorem 3.22 are similar to results of [Mat90], although the techniques
are different.

64



(b) It is possible to satisfy conditions (a)-(b) of definition 3.6 with b = ‖Ā‖q. The k index is not
needed (i.e. k ∈ K = {0} and αmnk = Amn).

(c) If one is concerned with query complexity rather than time complexity, and if A is not defined
in terms of an oracle, then conditions (c)-(d) of definition 3.6 can be ignored, as explained in
section 3.5.3. Therefore, A is EPSp(‖Ā‖q, 0).

(d) Let w be the smallest value such that σ/w is a convex combination of normalized dyads. That is
to say, let

w = min

{∑

i

|si|
∣∣∣∣∣si ∈ C, σ =

∑

i

siv
(i)u(i)>, ‖u(i)‖p = ‖v(i)‖q = 1

}
. (3.95)

It is possible to satisfy conditions (a)-(b) of definition 3.7 with b = w (although this is not
necessarily the smallest possible value of b). The k index is not needed (i.e. k ∈ K = {0} and
αmnk = σmn). Note that when p = q = 2, w is the trace norm of σ.

(e) If one is concerned with query complexity rather than time complexity, and if σ is not defined
in terms of an oracle, then conditions (c)-(d) of definition 3.7 can be ignored. Therefore, σ is
EHTp(w, 0) (although this is not necessarily the smallest possible value of b).

We present immediately the proof of parts (a), (d), and (e). Parts (b) and (c) will require more
preliminary discussion.

Proof of theorem 3.22(a). Let A be an M ×N matrix. Suppose conditions (a)-(b) of definition 3.6
are satisfied by some b, K, αmnk, P (n, k|m), and Q(m, k|n). Then, for all m ∈ {1, . . . ,M}, n ∈
{1, . . . , N}, and k ∈ K, we have Amn =

∑
k′∈K αmnk′ and

|αmnk|
P (n, k|m)1/pQ(m, k|n)1/q

≤ b. (3.96)

Rearranging this expression yields

|αmnk| ≤ b · P (n, k|m)1/pQ(m, k|n)1/q. (3.97)

Let u and v be nonnegative vectors satisfying ‖u‖p = ‖v‖q = 1 and u>Āv = ‖Ā‖q (that such vectors
exist is well known, but is also a consequence of theorem 3.25). Multiply both sides of (3.97) by
umvn and sum over m,n, k to get

∑

mnk

um |αmnk| vn ≤ b
∑

mnk

umP (n, k|m)1/pQ(m, k|n)1/qvn (3.98)

= b
∑

mnk

[P (n, k|m)upm]
1/p

[Q(m, k|n)vqn]
1/q (3.99)

≤ b
∑

mnk

[
1

p
P (n, k|m)upm +

1

q
Q(m, k|n)vqn

]
(3.100)

= b
∑

m

1

p
upm +

∑

n

1

q
vqn (3.101)

= b(1/p+ 1/q) (3.102)
= b (3.103)

where (3.100) follows from the inequality of arithmetic and geometric means. We now place a lower
bound on the left hand side. By the triangle inequality,

∑
k |αmnk| ≥ |

∑
k αmnk| = |Amn| for all
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m,n. Since u and v are nonnegative,

b ≥
∑

mnk

um |αmnk| vn (3.104)

≥
∑

mn

um |Amn| vn (3.105)

= ‖Ā‖q. (3.106)

Proof of theorem 3.22(d)-(e). Let σ be an M ×N matrix. Let si, u(i), and v(i) take values achieving
the minimum in (3.95). By absorbing phase into u(i) we can assume that the si are positive. We
then have w =

∑
i si, ‖u(i)‖p = ‖v(i)‖q = 1, and σ =

∑
i siv

(i)u(i)>. Define

P (n) =
∑

i

si
w

∣∣∣u(i)
n

∣∣∣
p

, (3.107)

Q(m) =
∑

i

si
w

∣∣∣v(i)
m

∣∣∣
q

. (3.108)

Since u(i) and v(i) are normalized for all i, and since
∑
i si/w = 1, these P (n) and Q(m) are convex

combinations of probability distributions and hence are probability distributions themselves.
For any m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, Hölder’s inequality gives

∑

i

s
1/p
i

w1/p

∣∣∣u(i)
n

∣∣∣ · s
1/q
i

w1/q

∣∣∣v(i)
m

∣∣∣ ≤
[∑

i

(
s

1/p
i

w1/p

∣∣∣u(i)
n

∣∣∣
)p]1/p [∑

i

(
s

1/q
i

w1/q

∣∣∣v(i)
m

∣∣∣
)q]1/q

(3.109)

=⇒
∑

i

si
w

∣∣∣u(i)
n v(i)

m

∣∣∣ ≤
[∑

i

si
w

∣∣∣u(i)
n

∣∣∣
p
]1/p [∑

i

si
w

∣∣∣v(i)
m

∣∣∣
q
]1/q

(3.110)

=⇒
∣∣∣∣∣
∑

i

si
w
u(i)
n v(i)

m

∣∣∣∣∣ ≤ P (n)1/pQ(m)1/q (3.111)

=⇒ |σmn|
w
≤ P (n)1/pQ(m)1/q (3.112)

=⇒ |σmn|
P (n)1/pQ(m)1/q

≤ w (3.113)

Therefore conditions (a)-(b) of definition 3.7 are satisfied with αmn0 = σmn and b = w.
If one is concerned with query complexity rather than time complexity, and if σ is not defined in

terms of an oracle, then conditions (c)-(d) of definition 3.7 are satisfied trivially with f = 0 since no
oracle queries are needed in order to carry out the required operations. So σ is EHTp(w, 0).

We now begin construction of the probability distributions satisfying conditions (a)-(b) of
definition 3.6 with b = ‖Ā‖q. The bulk of the discussion concerns the p ∈ (1,∞) case; the
reader interested only in p = 1 or p = ∞ may skip directly to the second half of the proof of
theorem 3.22(b)-(c) at the end of this section.

It suffices to let k take only a single value, say k = 0, and to set αmn0 = Amn. Making this
simplification, and plugging in the desired bound b = ‖Ā‖q, conditions (a)-(b) of definition 3.6
become

max
mn

{ |Amn|
P (n|m)1/pQ(m|n)1/q

}
≤ ‖Ā‖q. (3.114)
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It will be convenient to derive the probability distributions from a pair of vectors. With A being an
M ×N matrix, let u be a positive vector of dimension M and let v be a positive vector of dimension
N . Taking the probability distributions

P (n|m) = |Amn| vn/[Āv]m, (3.115)

Q(m|n) = |Amn|um/[Ā>u]n (3.116)

brings (3.114) to the form

max
mn

{(
[Āv]m
vn

)1/p(
[Ā>u]n
um

)1/q
}
≤ ‖Ā‖q. (3.117)

Consider for a moment the case p = q = 2. If Ā is not block diagonal (even under permutations
of rows and columns) then the left and right singular vectors of Ā will be positive. Taking these for
u and v it is easy to see that (3.117) holds. If p 6= 2 we can use a sort of generalization of singular
vectors: we will show the existence of positive vectors satisfying

(Ā>u)n ≤ vq/pn ‖Ā‖q, (3.118)

(Āv)m ≤ up/qm ‖Ā‖q. (3.119)

These vectors are easily seen to satisfy (3.117). If Ā is not block diagonal then u and v can
be computed using the power method [Boy74, BV11] since Ā is nonnegative. In this case the
inequalities (3.118)-(3.119) become equalities. On the other hand, if Ā is block diagonal then u and
v can be built from the generalized left and right singular vectors of each block. The rest of this
section is devoted to proving the existence of such vectors.

First we will need some basic facts about `p-norms. If v is a real vector normalized under the
`2-norm then u = v is the unique `2-normalized vector with the property that u>v = 1. This
generalizes to arbitrary `p-norms, with some adaptation.

Definition 3.23. Let p, q ∈ [1,∞] and 1/p + 1/q = 1. Let v ∈ `q. Any u ∈ `p satisfying the
conditions u>v = ‖v‖q and ‖u‖p = 1 is called a support functional of v.

Lemma 3.24. Let p, q ∈ (1,∞) and 1/p + 1/q = 1. For any nonzero v ∈ `q, the vector u ∈ `p
defined by

ui = ‖v‖−q/pq |vi|q/p sgn(vi) (3.120)

is the unique support functional of v. Similarly, for any nonzero u ∈ `p, the vector v ∈ `q defined by

vi = ‖u‖−p/qp |ui|p/q sgn(ui) (3.121)

is the unique support functional of u.

Proof. Uniqueness of the support functional when 1 < p < ∞ follows from strict convexity of the
norm (chapter 11 of [Car04]). That the specific vectors (3.120) and (3.121) are support functionals is
easily verified through direct computation [Arm10].

We now describe generalized singular vectors. Ordinary (p = 2) left and right singular vectors u
and v satisfy ‖Av‖2 = ‖A>u‖2 = ‖A‖2, furthermore u is the support functional of Av (since p = 2
this just means that u ∝ Av), and v is the support functional of A>u. These properties generalize
to arbitrary `p-norms, as we now show.

Theorem 3.25. Let p, q ∈ [1,∞] and 1/p + 1/q = 1. Let A be a matrix. Then there are vectors
u ∈ `p and v ∈ `q such that
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(a) ‖u‖p = ‖v‖q = 1

(b) u>Av = ‖A>u‖p = ‖Av‖q = ‖A‖q = ‖A>‖p
(c) u is a support functional of Av

(d) v is a support functional of A>u.

(e) If A is nonnegative then u and v are nonnegative.

Proof. Let v be a vector satisfying ‖v‖q = 1 and ‖Av‖q = ‖A‖q. Such a vector is guaranteed to exist
(see definition 5.6.1 of [HJ90]). Let u be a support functional of Av. By the definition of a support
functional, ‖u‖p = 1 so claims (a) and (c) have been proved. With these two vectors defined, we have

‖A‖q = ‖Av‖q (3.122)

= u>Av (u is the support functional of Av) (3.123)

= v>(A>u) (3.124)

≤ ‖v‖q‖A>u‖p (Hölder’s inequality) (3.125)

= ‖A>u‖p (3.126)

≤ ‖A>‖p‖u‖p (3.127)

= ‖A>‖p. (3.128)

By symmetry we also have ‖A>‖p ≤ ‖A‖q, therefore the inequalities become equalities. Claim (b) is
proved. Since ‖v‖q = 1 and v>(A>u) = ‖A>u‖p, claim (d) is proved as well.

To prove claim (e), assume that A is nonnegative. Then ‖ū‖p = ‖v̄‖q = 1 and ‖Av̄‖q ≥ ū>Av̄ ≥
u>Av = ‖A‖q. It follows that ‖Av̄‖q = ‖A‖q, thus ū is a support functional of Av̄. Therefore ū
and v̄ could have been taken instead of u and v in the first steps of this proof, justifying the claim
that u and v can be chosen to be nonnegative.

The Perron–Frobenius theorem states that an irreducible nonnegative matrix has a first eigenvector
that has positive components. A similar statement holds for the first singular vector: if Ā is a
nonnegative matrix that is not block diagonal then the left and right singular vectors associated with
the largest singular value of Ā have positive entries. This is true also for our generalized singular
vectors, as we now show.

Definition 3.26. A matrix A is block diagonal if there are permutation matrices σ and τ such that
A can be decomposed as Ā = σ>(A(1) ⊕ · · · ⊕A(L) ⊕ 0M×N )τ where the A(l) are nonzero and have
nonvanishing dimension, and at least one of the inequalities L > 1, M > 0, or N > 0 holds.18 A
matrix is not block diagonal if no such decomposition is possible. In particular, a matrix that is not
block diagonal has no totally zero rows or columns.

Lemma 3.27. Let q ∈ (1,∞). Let Ā be a nonnegative matrix that is not block diagonal. Let v be a
nonzero, nonnegative vector that maximizes ‖Āv‖q/‖v‖q. Then v is in fact a positive vector (has no
zero entries).

Proof. Let Z = {i : vi = 0}. This will be a proof by contradiction; suppose that v has at least one
zero entry, so that Z is nonempty. Since v 6= 0, the complement ZC is nonempty, therefore Z and ZC
partition the entries of v into two nonempty sets. Also, Z and ZC can be considered as a partition
of the columns of Ā. Since Ā is not block diagonal, there must be indices i ∈ Z, j /∈ Z, and k such
that Āki > 0 and Ākj > 0. We will show that v cannot maximize ‖Āv‖q/‖v‖q by showing that v is

18 If M > 0, N = 0 then ⊕0M×N adds M rows of zeros. Similarly, if M = 0, N > 0 then ⊕0M×N adds N columns
of zeros.
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not a critical point of ‖Āv‖q/‖v‖q, or equivalently of ‖Āv‖qq/‖v‖qq. Without loss of generality take
‖v‖q = 1. Let ı̂ be the unit vector corresponding to i. We have

∂

∂α

‖Ā(v + αı̂)‖qq
‖v + αı̂‖qq

∣∣∣∣∣
α=0

=

(
∂
∂α‖Ā(v + αı̂)‖qq

)
‖v‖qq − ‖Āv‖qq

(
∂
∂α‖v + αı̂‖qq

)

‖v‖2qq

∣∣∣∣∣
α=0

(3.129)

=
∂

∂α
‖Ā(v + αı̂)‖qq

∣∣∣∣
α=0

(3.130)

=
∂

∂α

∑

l

([Āv]l + αĀli)
q

∣∣∣∣∣
α=0

(3.131)

=
∑

l

qĀli[Āv]q−1
l (3.132)

≥ qĀki[Āv]q−1
k (3.133)

≥ qĀki(Ākjvj)q−1 (3.134)
> 0. (3.135)

Equality (3.130) follows from ‖v‖q = 1 as well as (vi = 0 =⇒ ∂‖v+αı̂‖qq/∂α = 0). Inequality (3.133)
follows from each term of the previous summation being nonnegative. Inequality (3.134) follows from
each term of the sum [Āv]k =

∑
n Āknvn being nonnegative.

Theorem 3.28. Let p, q ∈ (1,∞) and 1/p + 1/q = 1. Let Ā be a nonnegative matrix that is not
block diagonal. Then there are positive vectors u and v satisfying

(Ā>u)n = vq/pn ‖Ā‖q, (3.136)

(Āv)m = up/qm ‖Ā‖q. (3.137)

Note: if p = q = 2 then u and v will be the left and right singular vectors associated with the largest
singular value of Ā.

Proof. Theorem 3.25 guarantees the existence of nonnegative vectors u and v that satisfy ‖u‖p =
‖v‖q = 1 and u>Āv = ‖Ā‖q = ‖Ā>‖p with u being the support functional of Av and v being the
support functional of A>u. Lemma 3.24 give the exact form of these support functionals:

um = ‖Āv‖−q/pq (Āv)q/pm sgn(Āv) (3.138)

vn = ‖Ā>u‖−p/qp (Ā>u)p/qn sgn(Ā>u). (3.139)

Since Ā, u, and v are nonnegative, the sgn functions disappear. Theorem 3.25 gives ‖Āv‖q =
‖Ā>u‖p = ‖Ā‖q. With these simplifications, we get (3.136)-(3.137). That u and v have nonzero
entries follows from Lemma 3.27.

We now generalize theorem 3.28 to matrices that are not block diagonal. This is done by applying
theorem 3.28 to each individual block of the matrix. Each block of Ā may have a different operator
norm, but each of these is upper bounded by ‖Ā‖q. For this reason, we end up with an inequality
rather than an equality when generalizing (3.136)-(3.137).

Theorem 3.29. Let p, q ∈ (1,∞) and 1/p+1/q = 1. Let Ā be a nonnegative matrix that can possibly
be block diagonal and that may have some totally zero rows or columns. Then there are positive
vectors u and v satisfying

(Ā>u)n ≤ vq/pn ‖Ā‖q, (3.140)

(Āv)m ≤ up/qm ‖Ā‖q. (3.141)
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Proof. Let σ and τ be permutations matrices that bring out the block structure of Ā, and let
A(1), . . . , A(L) be the blocks. Specifically, suppose σ>(A(1) ⊕ · · · ⊕ A(L) ⊕ 0M×N )τ = Ā where the
A(1) · · ·A(L) matrices are not block diagonal and 0M×N is an M -by-N matrix of zeros (if there is no
zero block then just take M = N = 0). It is easy to see that ‖A(l)‖q ≤ ‖Ā‖q for all l ∈ {1, . . . , L}.

By theorem 3.28, there are positive vectors u(1), . . . ,u(L) and v(1), . . . ,v(L) such that

(A(l)>u(l))n = v(l)q/p
n ‖A(l)‖q (3.142)

≤ v(l)q/p
n ‖Ā‖q, (3.143)

(A(l)v(l))m = u(l)p/q
m ‖A(l)‖q (3.144)

≤ u(l)p/q
m ‖Ā‖q (3.145)

for all l ∈ {1, . . . , L}. Define u = σ>(u(1) ⊕ · · · ⊕ u(L) ⊕ 1M ) and v = τ>(v(1) ⊕ · · · ⊕ v(L) ⊕
1N ) where 1M and 1N are the all-ones vectors of lengths M and N , respectively. Then (3.142)-
(3.145) imply (3.140)-(3.141). Since the u(1), . . . ,u(L) and v(1), . . . ,v(L) are positive, u and v are
positive.

We are now ready to complete the proof of theorem 3.22.

Proof of theorem 3.22(b)-(c) . Let A be a matrix. Set K = {0} and αmn0 = Amn. Clearly condi-
tion (a) of definition 3.6 is satisfied.

Consider the case p ∈ (1,∞). Let u and v be positive vectors satisfying (3.140)-(3.141). The
existence of such vectors is guaranteed by theorem 3.29. Define the probability distributions

P (n|m) = |Amn| vn/[Āv]m, (3.146)

Q(m|n) = |Amn|um/[Ā>u]n. (3.147)

These satisfy condition (b) of definition 3.6 with b = ‖Ā‖q since

max
mnk

{ |αmnk|
P (n|m)1/pQ(m|n)1/q

}
= max

mn

{ |Amn|
P (n|m)1/pQ(m|n)1/q

}
(3.148)

= max
mn

{(
[Āv]m
vn

)1/p(
[Ā>u]n
um

)1/q
}

(3.149)

≤ max
mn





(
u
p/q
m ‖Ā‖q
vn

)1/p(
v
q/p
n ‖Ā‖q
um

)1/q


 (3.150)

= ‖Ā‖q. (3.151)

Now consider the case p = 1, q =∞ (the case p =∞, q = 1 follows by a symmetrical argument).
Define P (n|m) = |Amn| /

∑
n′ |Amn′ | and define Q(m|n) arbitrarily. Condition (b) of definition 3.6

is satisfied with b = ‖Ā‖∞ since

max
mnk

{ |αmnk|
P (n|m)1/pQ(m|n)1/q

}
= max

mn

{ |Amn|
P (n|m)1Q(m|n)0

}
(3.152)

= max
mn

{ |Amn|
|Amn| /

∑
n′ |Amn′ |

}
(3.153)

≤ ‖Ā‖∞. (3.154)

If one is concerned with query complexity rather than time complexity, and if A is not defined in
terms of an oracle, then conditions (c)-(d) of definition 3.6 are satisfied trivially with f = 0 since no
oracle queries are needed in order to carry out the required operations. So A is EPSp(‖Ā‖q, 0).
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3.B Proofs for section 3.5

In this section we prove theorem 3.10 and lemma 3.11. The proofs are conceptually rather simple,
however they are notationally tedious. Since we will at times be manipulating infinite series, we begin
by showing that these series converge absolutely. This will be useful, since absolutely convergent
series allow permutation of terms and reordering of double summations.

Lemma 3.30. Let b and αmnk satisfy condition (b) of definition 3.6. Then series
∑
k∈K αmnk is

absolutely convergent for all m,n, and
∑
k∈K |αmnk| ≤ b.

Proof. Rearranging (3.55) of condition (b) gives, for all m,n, k,

|αmnk| ≤ b · P (n, k|m)1/pQ(m, k|n)1/q (3.155)
≤ b · [P (n, k|m)/p+Q(m, k|n)/q] . (3.156)

Therefore,
∑

k∈K
|αmnk| ≤ b

∑

k∈K
[P (n, k|m)/p+Q(m, k|n)/q] (3.157)

= b · [P (n|m)/p+Q(m|n)/q] (3.158)
≤ b (3.159)
<∞. (3.160)

We now prove that linear combinations of EPS operators are EPS. Theorem 3.10(a), regarding
sums of EPS operators, follows as a corollary. This will also be used to prove theorem 3.10(c),
regarding exponentials of EPS operators.

Theorem 3.31 (Linear combination of EPS). Let L be a finite or countable set. For l ∈ L let sl be
a complex number and let A(l) be an M ×N matrix that is EPSp(bl, fl) for some fl and bl. Let W (l)
be a probability distribution19 on l such that W (l) can be sampled from, and sl/W (l) computed, in
average time O(f0). Let b := maxl{|sl| bl/W (l)} <∞ and f := f0 +

∑
lW (l)fl. Then

∑
l slA

(l) is
EPSp(b, f).

Proof. For each l ∈ L, A(l) is EPSp(bl, fl) so there areKl, α
(l)
mnk, Pl(n, k|m), and Ql(m, k|n) satisfying

definition 3.6. Let K = L× ∪l∈LKl. For (l, k) ∈ K define

αmn(l,k) =

{
slα

(l)
mnk if k ∈ Kl

0 otherwise.
(3.161)

We first show that
∑

(l,k)∈K αmn(l,k) is absolutely convergent, so that it can be expressed as a double

sum. By lemma 3.30,
∑
k∈Kl

∣∣∣α(l)
mnk

∣∣∣ ≤ bl for all l ∈ L, therefore

∑

(l,k)∈K

∣∣αmn(l,k)

∣∣ =
∑

l∈L
|sl|

∑

k∈Kl

∣∣∣α(l)
mnk

∣∣∣ (3.162)

≤
∑

l∈L
|slbl| (3.163)

≤ b. (3.164)

19 The lowest b is obtained when W (l) is proportional to |sl| bl.
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Since b < ∞ by assumption, the series
∑

(l,k)∈K αmn(l,k) is absolutely convergent. We can then
decompose it as a double series,

∑

(l,k)∈K
αmn(l,k) =

∑

l∈L
sl
∑

k∈Kl
α

(l)
mnk (3.165)

=
∑

l∈L
slA

(l), (3.166)

showing that condition (a) of definition 3.6 is satisfied.
Define the probability distributions

P (n, (l, k)|m) =

{
W (l)Pl(n, k|m) if k ∈ Kl

0 otherwise (3.167)

Q(m, (l, k)|n) =

{
W (l)Ql(m, k|n) if k ∈ Kl

0 otherwise. (3.168)

We now show that condition (b) holds. Let m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, and (l, k) ∈ K. We
need only consider k ∈ Kl since otherwise αmn(l,k) vanishes.

∣∣αmn(l,k)

∣∣
[P (n, (l, k)|m)]

1/p
[Q(m, (l, k)|n)]

1/q
=

∣∣∣slα(l)
mnk

∣∣∣
[W (l)Pl(n, k|m)]

1/p
[W (l)Ql(m, k|n)]

1/q
(3.169)

=
|sl|
W (l)

·

∣∣∣α(l)
mnk

∣∣∣
[Pl(n, k|m)]

1/p
[Ql(m, k|n)]

1/q
(3.170)

≤ |sl| bl/W (l) (3.171)
≤ b. (3.172)

Condition (c) requires that the distribution P (n, (l, k)|m) can be sampled from, and the values
αmn(l,k)/P (n, (l, k)|m) and αmn(l,k)/Q(m, (l, k)|n) can be computed, in average time O(f) = O(f0 +∑
lW (l)fl). This can be accomplished as follows:

(i) Draw l according to the distribution W (l) and compute sl/W (l). This can be done in average
time O(f0).

(ii) Draw n, k according to the distribution Pl(n, k|m) and compute α
(l)
mnk/Pl(n, k|m) and

α
(l)
mnk/Ql(m, k|n). This can be done in average time O(fl).

(iii) The quantities αmn(l,k)/P (n, (l, k)|m) and αmn(l,k)/Q(m, (l, k)|n) can be directly computed
from (3.161), (3.167), and (3.168) in time O(1) given the quantities that have been computed
in the previous two steps.

The average time needed for a given l is O(f0 + fl), therefore the average time needed given that l
is drawn according to W (l) is O(f) = O(f0 +

∑
lW (l)fl). Condition (c) is satisfied. Condition (d)

follows from a symmetric argument.

Proof of theorem 3.10(a). This follows directly from theorem 3.31. Specifically, apply theorem 3.31
with L = {A,B}, sA = sB = 1, W (A) = bA/(bA + bB), and W (B) = bB/(bA + bB). Then
b = maxl{|sl| bl/W (l)} = bA + bB and f = O(1) +

∑
lW (l)fl = O(max{bA, bB}).

Proof of theorem 3.10(b). Since A is EPSp(bA, fA), there are KA, α
(A)
lmk, PA(m, k|l), and QA(l, k|m)

satisfying definition 3.6 with l ∈ {1, . . . , L}, m ∈ {1, . . . ,M}, and k ∈ KA. Likewise, since B
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is EPSp(bB , fB), there are KB, α
(B)
mnk, PB(n, k|m), and QB(m, k|n) satisfying definition 3.6 with

m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, and k ∈ KB .
Let K = KA ×KB × {1, . . . ,M} and

αln(k′,k′′,m) = α
(A)
lmk′α

(B)
mnk′′ . (3.173)

We first show that
∑

(k′,k′′,m)∈K αln(k′,k′′,m) is absolutely convergent, so that it can be expressed as

a double series. By lemma 3.30,
∑
k′∈KA

∣∣∣α(A)
lmk′

∣∣∣ ≤ bA and
∑
k′′∈KB

∣∣∣α(B)
mnk′′

∣∣∣ ≤ bB , therefore
∑

(k′,k′′,m)∈K

∣∣αln(k′,k′′,m)

∣∣ =
∑

m∈{1,...,M}

∑

k′∈KA

∣∣∣α(A)
lmk′

∣∣∣
∑

k′′∈KB

∣∣∣α(B)
mnk′′

∣∣∣ (3.174)

≤MbAbB (3.175)
≤ ∞. (3.176)

Being absolutely convergent,
∑

(k′,k′′,m)∈K αln(k′,k′′,m) can be expressed as a double series, giving
∑

(k′,k′′,m)∈K
αln(k′,k′′,m) =

∑

m∈{1,...,M}

∑

k′∈KA
α

(A)
lmk′

∑

k′′∈KB
α

(B)
mnk′′ (3.177)

=
∑

m

AlmBmn (3.178)

= (AB)ln (3.179)

so condition (a) of definition 3.6 is satisfied.
Define the probability distributions

P (n, (k′, k′′,m)|l) = PA(m, k′|l)PB(n, k′′|m), (3.180)
Q(l, (k′, k′′,m)|n) = QA(l, k′|m)QB(m, k′′|n). (3.181)

These satisfy condition (b) of definition 3.6 since for all l,m, n, k′, k′′,

bAbB ≥

∣∣∣α(A)
lmk′

∣∣∣
PA(m, k′|l)1/pQA(l, k′|m)1/q

∣∣∣α(B)
mnk′′

∣∣∣
PB(n, k′′|m)1/pQB(m, k′′|n)1/q

(3.182)

=

∣∣αln(k′,k′′,m)

∣∣
P (n, (k′, k′′,m)|l)1/pQ(l, (k′, k′′,m)|n)1/q

. (3.183)

Condition (c) requires that it be possible in average time O(fA + fB) to sample from the
probability distribution P (n, (k′, k′′,m)|l) and to compute αln(k′,k′′,m)

P (n,(k′,k′′,m)|l) and αln(k′,k′′,m)

Q(l,(k′,k′′,m)|n) . This
can be accomplished as follows:

(i) Draw m, k′ from PA(m, k′|l) and compute
α

(A)

lmk′
PA(m,k′|l) and

α
(A)

lmk′
QA(l,k′|m) . This can be done in average

time O(fA).

(ii) Draw n, k′′ from PB(n, k′′|m) and compute
α

(B)

mnk′′
PB(n,k′′|m) and

α
(B)

mnk′′
QB(m,k′′|n) . This can be done in

average time O(fB).

(iii) Compute

αln(k′,k′′,m)

P (n, (k′, k′′,m)|l) =
α

(A)
lmk′

PA(m, k′|l) ·
α

(B)
mnk′′

PB(n, k′′|m)
(3.184)

αln(k′,k′′,m)

Q(l, (k′, k′′,m)|n)
=

α
(A)
lmk′

QA(l, k′|m)
· α

(B)
mnk′′

QB(m, k′′|n)
. (3.185)
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This can be done in time O(1) since the factors on the right hand sides of these expressions
have already been computed in the previous two steps.

So condition (c) is satisfied. Condition (d) follows from a symmetric argument.

Proof of theorem 3.10(c). Let A be a square matrix that is EPSp(b, f). We will show that eA is
EPSp(eb, bf).

This follows from applying theorem 3.31 and theorem 3.10(b) to eA =
∑∞
j=0A

j/j!. Specifically, let
L = {0, 1, . . . }, A(l) = Al, sl = 1/l!, andW (l) = bl/(l!eb). By repeated application of theorem 3.10(b),
A(l) is EPSp(bl, lf). Assume for now that W (l) can be sampled in average time O(b). Then by
theorem 3.31, eA =

∑∞
j=0A

j/j! is EPSp(b′, f ′) with b′ = maxl{|sl| bl/W (l)} = eb and

f ′ = b+

∞∑

l=0

W (l)fl (3.186)

= b+

∞∑

l=0

lfbl

l!eb
(3.187)

= b+
bf

eb

∞∑

l=1

bl−1

(l − 1)!
(3.188)

= b+ bf (3.189)
= O(bf) (3.190)

It remains only to show that W (l) can be sampled in time O(b). The procedure is as follows.
Flip a weighted coin that lands heads with probability W (0), and if it lands heads take l = 0. This
can be done in time O(1). If the coin landed tails then flip another coin that lands heads with
probability W (1)/(1−W (0)), and if it lands heads take l = 1. Continue, each iteration flipping a
coin that lands heads with probability W (l)/(1−∑l−1

j=0W (j)). Each iteration requires computing
W (l)/(1−∑l−1

j=0W (j)), which in turn requires computing W (l) and updating the partial sum with
the previous W (l − 1). This can be done in O(1) time. The expected number of iterations is∑
l lW (l) = b. Therefore, this sampling algorithm takes average time b.

Proof of lemma 3.11. Since σ is EHTp(bσ, fσ), there are α(σ)
nmk, Pσ(m, k), and Qσ(n, k) with k ∈ Kσ

satisfying definition 3.7 (note that m and n have been swapped since σ is an N ×M operator).
Similarly, since A is EPSp(bA, fA) there are α(A)

mnk′ , PA(n, k′|m), and QA(m, k′|n) with k′ ∈ KA

satisfying definition 3.6.
We have

Tr(Aσ) =
∑

mn

Amnσnm (3.191)

=
∑

mnkk′

α
(A)
mnk′α

(σ)
nmk. (3.192)

Define the probability distribution

R(m,n, k, k′) =
1

p
Pσ(m, k)PA(n, k′|m) +

1

q
Qσ(n, k)QA(m, k′|n). (3.193)

By the inequality of arithmetic and geometric means,

R(m,n, k, k′) ≥ [Pσ(m, k)PA(n, k′|m)]1/p[Qσ(n, k)QA(m, k′|n)]1/q. (3.194)
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Setting V (m,n, k, k′) = α
(A)
mnk′α

(σ)
nmk we get the bound

bmax : = max
mnkk′

{ |V (m,n, k, k′)|
R(m,n, k, k′)

}
(3.195)

≤ max
mnkk′





∣∣∣α(A)
mnk′α

(σ)
nmk

∣∣∣
[Pσ(m, k)PA(n, k′|m)]1/p[Qσ(n, k)QA(m, k′|n)]1/q



 (3.196)

≤ max
mnk′





∣∣∣α(A)
mnk′

∣∣∣
PA(n, k′|m)1/pQA(m, k′|n)]1/q



 ·max

mnk





∣∣∣α(σ)
nmk

∣∣∣
Pσ(m, k)1/pQσ(n, k)1/q



 (3.197)

≤ bAbσ. (3.198)

By corollary 3.2, the sum (3.192) can be estimated at the cost of drawing O(log(δ−1)ε−2b2σb
2
A)

samples from R(m,n, k, k′) and evaluating the corresponding V (m,n, k, k′)/R(m,n, k, k′). Each of
these samples can be computed in average time O(fσ + fA) as follows.

(i) Flip a weighted coin that lands heads with probability 1/p.

(ii) If it lands heads, sample m, k according to Pσ(m, k) and then sample n, k′ according to
PA(n, k′|m).

(iii) If it lands tails, sample n, k according to Qσ(n, k) and then sample m, k′ according to
QA(m, k′|n).

(iv) The previous steps produce a sample according to R(m,n, k, k′) and can be accomplished in
time O(fσ + fA) by conditions (c) and (d) of definition 3.6 and (c) and (d) of definition 3.7,
with the side effect of producing values α(σ)

nmk/Pσ(m, k), α(A)
mnk′/PA(n, k′|m), α(σ)

nmk/Qσ(n, k),
and α(A)

mnk′/QA(m, k′|n).

(v) These values can be used to compute V (m,n, k, k′)/R(m,n, k, k′) since

V (m,n, k, k′)
R(m,n, k, k′)

=
α

(A)
mnk′α

(σ)
nmk

R(m,n, k, k′)
(3.199)

=

[
1

p

PA(n, k′|m)

α
(A)
mnk′

· Pσ(m, k)

α
(σ)
nmk

+
1

q

QA(m, k′|n)

α
(A)
mnk′

· Qσ(n, k)

α
(σ)
nmk

]−1

(3.200)

Therefore, the sum (3.192) can be estimated in average time O[log(δ−1)ε−2b2σb
2
A(fσ + fA)].

3.C Proofs for section 3.6
In section 3.6 several matrices and classes of matrices were claimed to be EPS2(b, f) or EPSp(b, f)
for small values of b and f . In this appendix we provide proofs for these claims.

We first prove that the efficiently computable sparse (ECS) matrices from [VdN11] (definition
reproduced below) are EPSp(polylog(N),polylog(N)). This covers a rather large class of matrices
including permutation matrices, Pauli matrices, controlled phase matrices, and arbitrary unitaries on
a constant number of qudits. The original definition from [VdN11] was in terms of qubits, but we
adapt it to systems of arbitrary dimension.

Definition 3.32 (ECS). A matrix A is efficiently computable sparse (ECS) if

(a) Each row and column of A has at most polylog(N) nonzero entries.
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(b) For any given row index m, it is possible in polylog(N) time to list the indices of the nonzero
entries in that row, {n : Amn 6= 0}, and to compute their values Amn.

(c) For any given column index n, it is possible in polylog(N) time to list the indices of the nonzero
entries in that column, {m : Amn 6= 0}, and to compute their values Amn.

Theorem 3.33 (ECS is EPS). Let A be an ECS matrix satisfying maxmn{|Amn|} = polylog(N).
Unitaries and Hermitian matrices whose eigenvalues are in the [−1, 1] range satisfy this bound. Then
A is EPSp(polylog(N), polylog(N)) for any p ∈ [1,∞].

Proof. Theorem 3.12 is applicable here with f = polylog(N). Let P (n|m) and Q(m|n) be the
probability distributions defined in (3.67). Given any m and n, the value Amn can be computed
in polylog(N) time. Since each row and column contains polylog(N) nonzero entries, which can
be enumerated and computed in polylog(N) time, the sums

∑
n′ |Amn′ | and

∑
m′ |Am′n| can be

computed in polylog(N) time. Thus condition (c) of theorem 3.12 is satisfied.
For any given m, the distribution P (n|m) has support of size polylog(N), the indices of

which can be enumerated in polylog(N) time, and each individual probability can be com-
puted in time polylog(N). Therefore, this distribution can be sampled from in time polylog(N).
Similarly for Q(m|n), so conditions (a) and (b) of theorem 3.12 are satisfied and A is
EPSp(‖A‖1/p∞ ‖A‖1/q1 , polylog(N)). Each row and column of A has at most polylog(N) nonzero
entries, each bounded by maxmn{|Amn|} = polylog(N). It follows that ‖A‖∞ = polylog(N) and
‖A‖1 = polylog(N), giving ‖A‖1/p∞ ‖A‖1/q1 = polylog(N).

A block diagonal matrix is EPSp(b, f) if each of its blocks is EPSp(b, f). This is rather powerful in
that it can be used to show the EPS property for operations on subsystems, for controlled-unitaries,
and for some rather exotic projectors. This will be the subject of the following theorem and corollaries.

Theorem 3.34 (Block diagonal). For r ∈ {1, . . . , R}, let A(r) be an EPSp(br, f) matrix of dimension
Mr ×Nr. Let A be the block diagonal matrix A = ⊕rA(r) of dimension

∑
rMr ×

∑
rNr. Suppose

that it is possible in time O(f) to convert between row/column indices of A and the corresponding
block indices (i.e. m′ → (r,m) and n′ → (s, n) and their inverse maps, with Am′n′ = δrsA

(r)
mn). Then

A is EPSp(maxr{br}, f).

Proof. Since A(r) is EPSp(br, f) for each r, there are Kr, α
(r)
mnk, Pr(n, k|m), and Qr(m, k|n) satisfying

definition 3.6, with m ∈ {1, . . . ,Mr}, n ∈ {1, . . . , Nr}, and k ∈ Kr. Since we can convert between
row/column indices of A and the corresponding block indices in time O(f), go ahead and label the
indices of A using block indices: A(r,m),(s,n) = δrsA

(r)
mn. Define K = ∪rKr and

α(r,m),(s,n),k =

{
α

(r)
mnk if r = s and k ∈ Kr

0 otherwise.
(3.201)

This satisfies condition (a) of definition 3.6 since
∑

k∈K
α(r,m),(s,n),k = δrs

∑

k∈Kr
α

(r)
mnk (3.202)

= δrsA
(r)
mn (3.203)

= A(r,m),(s,n). (3.204)

Define the probability distributions

P ((s, n), k|(r,m)) = δrsPr(n, k|m), (3.205)
Q((r,m), k|(s, n)) = δrsQs(m, k|n). (3.206)
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That α(r,m),(s,n),k, P ((s, n), k|(r,m)), and Q((r,m), k|(s, n)) satisfy conditions (c) and (d) of defini-
tion 3.6 directly follows from the fact that α(r)

mnk, Pr(n, k|m), and Qs(m, k|n) satisfy conditions (c)
and (d) for all r. Condition (b) is satisfied as well, since

max
(r,m),(s,n),k

{ ∣∣α(r,m),(s,n),k

∣∣
P ((s, n), k|(r,m))1/pQ((r,m), k|(s, n))1/q

}
(3.207)

= max
r

max
mnk





∣∣∣α(r)
mnk

∣∣∣
Pr(n, k|m)1/pQr(m, k|n)1/q



 (3.208)

≤ max
r
{br}. (3.209)

Corollary 3.35. For r ∈ {1, . . . , R}, let A(r) be matrices on a space of dimension N . Suppose
that each A(r) is EPSp(b, f) with f = Ω(log2(N)). Then A =

∑R
r=1 |r〉 〈r| ⊗A(r), where the |r〉 are

computational basis states, is EPSp(b, f).

Proof. This is essentially a restatement of theorem 3.34 for the case where all the A(r) are the same
size. We require f = Ω(log2(N)) because converting row or column indices of A to indices of the
blocks (as required for application of theorem 3.34) requires the operation of computing the quotient
and remainder of division by N . The f = Ω(log2(N)) requirement can be dropped if one is dealing
with query complexity rather than computational complexity.

Corollary 3.36. Let U denote a unitary matrix on n qubits whose rows are CT states (e.g. the
Fourier transform). Let g : {0, . . . , 2n−1} → {0, . . . , 2n−1} be a poly(n) time computable function.
Then the projector

∑2n−1

x=0 |x〉 〈x| ⊗ U† |g(x)〉 〈g(x)|U is EPS2(1, poly(n)). This projector corresponds
to measuring half of the system in the computational basis to get measurement result x, measuring
the other half of the system in the basis determined by U to get y, and returning true if y = g(x).
The measurement depicted in fig. 3.1 is of this form.

Proof. Apply corollary 3.35 with A(x) = U† |g(x)〉 〈g(x)|U . U† |g(x)〉 is a CT state, so by theorem 3.13
A(x) is EHT2(1, poly(n)) and therefore also EPS2(1, poly(n)).

Corollary 3.37. Let IM1 and IM2 denote the identity operator on spaces of dimension M1 and
M2. Let A be an EPSp(b, f) matrix of dimension N1 × N2 with f = Ω(log2(M1M2N1N2)). Then
IM1
⊗A⊗ IM2

is EPSp(b, f). This somewhat trivial result is important in that it allows the matrix
to act on subsystems of the full state.

Proof. Apply theorem 3.34 with all of the A(r) blocks being equal. We require f =
Ω(log2(M1M2N1N2)) in order to allow converting row or column indices of IM1

⊗ A ⊗ IM2
to

indices of A in time O(f).

We now turn to the Grover reflection operation. We will show this operator to be EPS2(3, log(N)).
Since a unitary operator incurs a time expense of b4 as per (3.69), each round of Grover’s algorithm
multiplies the simulation time by 34 = 81. This time is constant in the number of qubits, but is
exponential in the number of rounds. Our technique is therefore perfectly capable of simulating a
small number of Grover reflections placed anywhere in a circuit, but would perform very poorly,
exp(Θ(

√
N)) time, if applied to the Θ(

√
N) rounds required by Grover’s algorithm.

Theorem 3.38. Let |+〉 = N−1/2
∑N−1
i=0 |i〉. The Grover reflection I − 2 |+〉 〈+| is EPS2(3, log(N)).
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Proof. Let δmn be the Kronecker delta. The identity operator can be seen to be EPSp(1, log(N)),
for any p but in particular p = 2, by simple inspection of definition 3.6 with K = {0} and
αmnk = P (n, k|m) = Q(m, k|n) = δmn. Note that we must take f = log(N) rather than f = 1 since
it takes Ω(log(N)) time to even write the indices m and n, which are log(N) bits long.

By Theorem 3.13, the projector |+〉 〈+| is EHT2(1, log(N)), and therefore also EPS2(1, log(N)).
By theorem 3.9 the operator (−2) |+〉 〈+| is EPS2(2, log(N)) and by theorem 3.10(a) the operator
I − 2 |+〉 〈+| is EPS2(3, log(N)). One cannot do much better than b = 3 since ‖I − 2(|+〉 〈+|)‖2 → 3
as N →∞.

Next we show that the Haar wavelet transform on n qubits, denoted Gn, is EPS2(
√
n+ 1, n).

This is the lowest possible value of b, since ‖Ḡn‖2 =
√
n+ 1.

Definition 3.39. The Haar wavelet transform on n qubits is defined to be

Gn = (|0〉 〈+|)⊗n +

n−1∑

m=0

(|0〉 〈+|)⊗m ⊗ |1〉 〈−| ⊗ I⊗n−m−1. (3.210)

Note that there are other conventions that differ from this by a permutation in the computational
basis. Such permutations do not affect whether the Haar transform is EPS2(

√
n+ 1, n).

As an example, the Haar transform on three qubits is implemented by the circuit depicted in
fig. 3.4 and in the computational basis takes the form

G3 =




1√
8

1√
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4
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0
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4

0 −1√
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0 −1√
4

1√
2

0 0 0 −1√
2

0 0 0

0 1√
2

0 0 0 −1√
2

0 0

0 0 1√
2

0 0 0 −1√
2

0

0 0 0 1√
2

0 0 0 −1√
2




. (3.211)

H

H

H

Figure 3.4: This circuit implements the Haar transform of definition 3.39, on three qubits [Hoy97].
The gates in this circuit are controlled-Hadamard gates, and the open circles denote that the
Hadamard gates are active when all of the controls are in the |0〉 state.

Theorem 3.40. The Haar transform on n qubits is EPS2(
√
n+ 1, n).

Proof. Since we are dealing with spaces of dimension 2n, made of qubits, it will be convenient to
index the space using bit strings x,y ∈ {0, 1}n. We will denote the corresponding basis vectors using
the notation |x〉 = |x0〉 ⊗ · · · ⊗ |xn−1〉. To avoid notational confusion regarding subscripts, define
A = Gn. Then Axy refers to the matrix element 〈x|Gn|y〉.

Take K = {0} (i.e. don’t make use of the index k), and set αxyk = Axy. This satisfies condition (a)
of definition 3.6 trivially. Take the probability distributions P (y|x) and Q(x|y) to be uniform over
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the nonzero elements of the given row or column of Axy. Despite the apparent simplicity of this
choice, analysis will be tedious due to the somewhat complicated definition of A. These probability
distributions can be expressed as follows.

P (y|x) =
1

2n
[x = 0] +

n−1∑

m=0

1

2m+1

(
m−1∏

i=0

[xi = 0]

)
[xm = 1]

(
n−1∏

i=m+1

[yi = xi]

)
(3.212)

Q(x|y) =
1

n+ 1

{
[x = 0] +

n−1∑

m=0

(
m−1∏

i=0

[xi = 0]

)
[xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)}
(3.213)

These can be sampled from in time O(n). Consider first P (y|x). Given an x, only a single one of
the n+ 1 terms of (3.212) doesn’t vanish, and this term can be identified in time O(n), by searching
for the smallest (if any) m for which xm = 1. The nonvanishing term defines the value of yi for
some of the i, and gives a uniform distribution for each of the remaining yi. For Q(x|y), each of the
n+ 1 terms of (3.213) is nonvanishing for a single value of x, and each occurs with equal probability.
Therefore, sampling from Q(x|y) is accomplished by drawing from a uniform distribution over n+ 1
possibilities.

To satisfy conditions (c) and (d) of definition 3.6 we must also show that Axy/P (y|x) and
Axy/Q(x|y) can be computed in time O(n). We begin by writing an expression for Axy. In the
equations below, square brackets denote the Iverson bracket, which takes a value of 1 if the enclosed
expression is true and 0 otherwise.

Axy = 〈x|
(

(|0〉 〈+|)⊗n +

n−1∑

m=0

(|0〉 〈+|)⊗m ⊗ |1〉 〈−| ⊗ I⊗n−m−1

)
|y〉 (3.214)

=
1√
2n

[x = 0] +

n−1∑

m=0

(−1)ym√
2m+1

(
m−1∏

i=0

[xi = 0]

)
[xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)
, (3.215)

Since only a single term for each of (3.212), (3.213), and (3.215) is nonvanishing for each given x,y
pair, we can divide these equations term-by-term to get

Axy

P (y|x)
=
√

2n[x = 0] +

n−1∑

m=0

(−1)ym
√

2m+1

(
m−1∏

i=0

[xi = 0]

)
[xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)
, (3.216)

Axy

Q(x|y)
= (n+ 1)

{
1√
2n

[x = 0] +

n−1∑

m=0

(−1)ym√
2m+1

(
m−1∏

i=0

[xi = 0]

)
[xm = 1]

(
n−1∏

i=m+1

[xi = yi]

)}
.

(3.217)

At most a single term of these expressions is nonvanishing for each given x,y pair, and this term can
be identified in time O(n) by searching for the smallest (if any) m for which xm = 1. The value of
nonvanishing terms is of the form ±

√
2s or ±(n+ 1)/

√
2s for some s, and this can be computed in

O(1) time.
That condition (b) of definition 3.6 is satisfied is checked directly,

max
xy

{ |Axy|
P (y|x)1/2Q(x|y)1/2

}
= max

xy

{( |Axy|
P (y|x)

|Axy|
Q(x|y)

)1/2
}

(3.218)

= max
xy

{
(n+ 1)1/2

}
(3.219)

=
√
n+ 1, (3.220)

where (3.219) follows from the fact that only a single term from each of (3.216) and (3.217) is
nonvanishing, so they can be multiplied term-by-term.
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Chapter 4

Bounds on Entanglement Assisted
Source-channel Coding via the Lovász
ϑ Number and its Variants1

1 Preprint available: Toby Cubitt, Laura Mančinska, David Roberson, Simone Severini, Dan Stahlke, and An-
dreas Winter, Bounds on Entanglement Assisted Source-channel Coding via the Lovász ϑ Number and its Variants,
arXiv:1310.7120 [quant-ph] (2013).
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4.1 Abstract
We study zero-error entanglement assisted source-channel coding (communication in the presence
of side information). Adapting a technique of Beigi, we show that such coding requires existence
of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and H.
Such vectors exist if and only if ϑ(G) ≤ ϑ(H) where ϑ represents the Lovász number. We also obtain
similar inequalities for the related Schrijver ϑ′ and Szegedy ϑ+ numbers.

These inequalities reproduce several known bounds and also lead to new results. We provide
a lower bound on the entanglement assisted cost rate. We show that the entanglement assisted
independence number is bounded by the Schrijver number: α∗(G) ≤ ϑ′(G). Therefore, we are able
to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to
the integer part of the Lovász number. Beigi introduced a quantity β as an upper bound on α∗ and
posed the question of whether β(G) = bϑ(G)c. We answer this in the affirmative and show that a
related quantity is equal to dϑ(G)e. We show that a quantity χvect(G) recently introduced in the
context of Tsirelson’s problem is equal to dϑ+(G)e.

In an appendix we investigate multiplicativity properties of Schrijver’s and Szegedy’s numbers, as
well as projective rank.

4.2 Introduction
The source-channel coding problem is as follows: Alice and Bob can communicate only through a
noisy channel. Alice wishes to send a message to Bob, and Bob already has some side information
regarding Alice’s message. (Note that Alice’s message may be several bits long.) Alice encodes her
message and sends a transmission through the channel. Given the (noisy) channel output along
with his side information, Bob must be able to deduce Alice’s message with zero probability of error
(we always require zero error throughout this entire paper). An (m,n)-coding scheme consists of
encoding and decoding operations which allow sending m messages via n uses of the noisy channel
(again, each of the m messages may be several bits long). The cost rate η is the infimum of n/m over
all (m,n)-coding schemes.

There are two special cases which are particularly noteworthy. If the messages are bits and
there is no side information then the inverse of the cost rate, 1/η, is the Shannon capacity [Sha56],
the number of zero-error bits that can be transmitted per channel use in the limit of many uses of
the channel. On the other hand, communication over a perfect channel with side information was
considered by Witsenhausen [Wit76]; the corresponding cost rate is known as the Witsenhausen rate.
The general problem, with both side information and a noisy channel, was considered by Nayak,
Tuncel, and Rose [NTR06].

The Shannon capacity of a channel is very difficult to compute, and is not even known to
be decidable. However, a useful upper bound on Shannon capacity is provided by the ϑ number
introduced by Lovász [Lov79]. The Lovász ϑ number also provides a lower bound on the Witsenhausen
rate [NTR06] and, in general, the cost rate.

Recently it has been of interest to study a version of this problem in which the parties may make
use of an entangled quantum state, which can in certain cases increase the zero-error capacity of a
classical channel [CLMW10,LMM+12]. The Lovász ϑ number upper bounds entanglement assisted
Shannon capacity, just as it does classical Shannon capacity [Bei10,DSW13]. Beigi’s proof [Bei10]
proceeds through a relaxation of the channel coding problem, with the relaxed constraints consisting
of various orthogonality conditions imposed upon a set of vectors. We study a relaxation of the
entanglement assisted source-channel coding problem inspired by this technique of Beigi. This
relaxation leads to a set of constraints that are exactly characterized by monotonicity of ϑ. This has
a number of consequences. Beigi defined a function β as an upper bound on entanglement assisted
independence number and posed the question of whether β is equal to bϑc. We answer this in the
affirmative and show that a similarly defined quantity is equal to dϑe. We show that ϑ provides a
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bound for the source-channel coding problem. As a special case this reproduces both Beigi’s result as
well as that of Briët et al. [BBL+13] in which it is shown that ϑ is a lower bound on the entanglement
assisted Witsenhausen rate.

A slightly different relaxation of source-channel coding leads to three necessary conditions for the
existence of a (1, 1)-coding scheme in terms of ϑ and two variants: Schrijver’s ϑ′ and Szegedy’s ϑ+.
This reproduces or strengthens results from [Bei10,BBL+13,RM12] under a unified framework, with
simpler proofs. In particular, we produce a tighter bound on the entanglement assisted independence
number: α∗ ≤ ϑ′.

The technical results, theorems 4.6 and 4.10, should be accessible to the reader who is familiar with
graph theory but not information theory or quantum mechanics, which merely provide a motivation
for the problem.

4.3 Source-channel coding

We will make use of the following graph theoretical concepts. A graph G consists of a set of vertices
V (G) along with a symmetric binary relation x ∼G y among vertices (we abbreviate x ∼ y when
the graph can be inferred from context). A pair of vertices (x, y) satisfying x ∼ y are said to be
adjacent. Equivalently, it is said that there is an edge between x and y. Vertices are not adjacent
to themselves, so x 6∼ x for all x ∈ V (G). The complement of a graph G, denoted G, has the same
set of vertices but has edges between distinct pairs of vertices which are not adjacent in G (i.e. for
x 6= y we have x ∼G y ⇐⇒ x 6∼G y). A set of vertices no two of which form an edge is known as
an independent set ; the size of the largest independent set is the independence number α(G). A set
of vertices such that every pair is adjacent is known as a clique; the size of the largest clique is the
clique number ω(G). Clearly ω(G) = α(G). An assignment of colors to vertices such that adjacent
vertices are given distinct colors is called a proper coloring ; the minimum number of colors needed
is the chromatic number χ(G). A function mapping the vertices of one graph to those of another,
f : V (G)→ V (H), is a homomorphism if x ∼G y =⇒ f(x) ∼H f(y). Since vertices are not adjacent
to themselves it is necessary that f(x) 6= f(y) when x ∼ y. If such a function exists, we say that G
is homomorphic to H and write G→ H. The complete graph on n vertices, denoted Kn, has an edge
between every pair of vertices. It is not hard to see that ω(G) is equal to the largest n such that
Kn → G, and χ(G) is equal to the smallest n such that G→ Kn. Many other graph properties can
be expressed in terms of homomorphisms; for details see [HT97,HN04]. The strong product of two
graphs, G�H, has vertex set V (G)× V (H) and has edges

(x1, y1) ∼ (x2, y2) ⇐⇒ (x1 = x2 and y1 ∼ y2) or
(x1 ∼ x2 and y1 = y2) or
(x1 ∼ x2 and y1 ∼ y2).

The n-fold strong product is written G�n := G�G� · · ·�G. The disjunctive product G ∗H has
edges

(x1, y1) ∼ (x2, y2) ⇐⇒ x1 ∼ x2 or y1 ∼ y2.

It is easy to see that G ∗H = G�H. The n-fold disjunctive product is written G∗n := G∗G∗ . . .∗G.
Suppose that Alice communicates to Bob through a noisy classical channel N : S → V . She

wishes to send a message to Bob with zero chance of error. Let N (v|s) denote the probability that
N will produce symbol v when given symbol s as input, and define the graph H with vertices S and
edges

s ∼H t ⇐⇒ N (v|s)N (v|t) = 0 for all v ∈ V. (4.1)
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Bob can distinguish codewords s and t if and only if they have no chance of being mapped to the
same output by N . Therefore, Alice’s set of codewords must form a clique of H; the size of the
largest such set is the clique number ω(H). We will call this the distinguishability graph of N . The
complementary graph H is known as the confusability graph of N . Note that standard convention
is to denote the confusability graph by H rather than H. We break convention in order to make
notation in this paper much simpler. However, to minimize confusion when discussing prior results,
we will follow the tradition of using the independence number when speaking of the number of
codewords that Alice can send (equal to α(H) = ω(H) in our notation).

The number of bits (the base-2 log of the number of distinct codewords) that Alice can send with
a single use of N is known as the one-shot zero-error capacity of N , and is equal to logα(H). The
average number of bits that can be sent per channel use (again with zero error) in the limit of many
uses of a channel is known as the Shannon capacity. With n parallel uses of N the distinguishability
graph is H∗n. The Shannon capacity of N is therefore

Θ(H) : = lim
n→∞

1

n
logω(H∗n)

= lim
n→∞

1

n
logα(H

�n
).

This quantity is in general very difficult to compute, with the capacity of the five cycle graph
H = C5 having been open for over 20 years and the capacity of C7 being unknown to this day. The
capacity of C5 was solved by Lovász [Lov79] who introduced a function ϑ(H), the definition of which
will be postponed until section 4.4. Lovász proved a sandwich theorem which, using the notation
ϑ̄(H) := ϑ(H), takes the form

α(H) = ω(H) ≤ ϑ̄(H) ≤ χ(H).

He also showed that ϑ̄(H∗n) = ϑ̄(H)n, therefore Θ(H) ≤ log ϑ̄(H). This bound also applies to
entanglement assisted communication [Bei10], which we will investigate in detail, and has been
generalized to quantum channels [DSW13].

Alice’s lab

Bob’s lab
P (x, u)

Encode:
s = f(x)

N (v|s)

Decode x

x

u

s

v

Figure 4.1: A zero-error source-channel (1, 1)-coding scheme.

We now introduce the source-channel coding problem. As before, Alice wishes to send Bob a
message x ∈ X, and she can only communicate through a noisy channel N : S → V . Now, however,
Bob has some side information about Alice’s message. Specifically, Alice and Bob each receive one
part of a pair (x, u) drawn according to a probability distribution P (x, u). This is known as a dual
source. Alice encodes her input x using a function f : X → S and sends the result through N . Bob
must deduce x with zero chance of error using the output of N along with his side information u.
Such a protocol is called a zero-error source-channel (1, 1)-coding scheme, and is depicted in fig. 4.1.
An (m,n)-coding scheme transmits m independent instances of the source using n copies of the
channel.

Again the analysis involves graphs. Let H again be the distinguishability graph (4.1) and define
the characteristic graph G with vertices X and edges

x ∼G y ⇐⇒ ∃u ∈ U such that P (x, u)P (y, u) 6= 0.
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In [NTR06] it was shown that decoding is possible if and only if Alice’s encoding f is a homomorphism
from G to H.2 Therefore a zero-error (1, 1)-coding scheme exists if and only if G→ H. A zero-error
(m,n)-coding scheme is possible if and only if

G�m → H∗n. (4.2)

The smallest possible ratio n/m (in the limit m→∞) is called the cost rate, η(G,H). More precisely,
the cost rate is defined as

η(G,H) = lim
m→∞

1

m
min

{
n : G�m → H∗n

}
. (4.3)

The ϑ̄ quantity is monotone under graph homomorphisms in the sense that G→ H =⇒ ϑ̄(G) ≤
ϑ̄(H) [dCST13]. Consequently, a zero-error (1, 1)-coding scheme requires ϑ̄(G) ≤ ϑ̄(H). Since
ϑ̄(G�m) = ϑ̄(G)m [Knu94] and ϑ̄(H∗n) = ϑ̄(H)n [Lov79], it follows that an (m,n)-coding scheme is
possible only if log ϑ̄(G)/ log ϑ̄(H) ≤ n/m. Thus we have the bound

η(G,H) ≥ log ϑ̄(G)

log ϑ̄(H)
.

(Cf. [NTR06] for the special case of the Witsenhausen rate.)
We will return to this in section 4.4 when we prove an analogous bound for entanglement assisted

zero-error source-channel coding.
When Bob has no side information (equivalently, when U is a singleton), G is the complete graph.

In this case zero-error transmission of x is possible if and only ifKn → H where n = |X|, which in turn
holds if and only if n ≤ ω(H) = α(H). This is the expected result, since as mentioned before α(H)
is the number of unambiguously decodable codewords that Alice can send through N . On the other
hand, consider the case where there is side information and N is a noiseless channel of size n = |S|.
Now H becomes the complete graph Kn, so x can be perfectly transmitted if and only if G→ Kn.
This holds if and only if n ≥ χ(G). These two examples provide an operational interpretation to the
independence number and chromatic number of a graph. The analogous communication problems
in the presence of an entangled state (which we examine shortly) define the entanglement assisted
independence and chromatic numbers.

Alice’s lab

Bob’s lab
P (x, u)

POVM:
{Mx

s }s∈S

N (v|s)

Decode x

x

u

|ψ〉

s

v

Figure 4.2: An entanglement assisted zero-error source-channel (1, 1)-coding scheme.

If Alice and Bob share an entangled state they can use the strategy depicted in fig. 4.2, which is
described in greater detail in [BBL+13]. Alice, upon receiving x ∈ X, performs a POVM {Mx

s }s∈S
on her half of the entanglement resource |ψ〉 ∈ HA ⊗ HB and receives measurement outcome
s ∈ S. Without loss of generality this can be assumed to be a projective measurement since any
POVM can be converted to a projective measurement by enlarging the entangled state. So for each
x ∈ X, the collection {Mx

s }s∈S consists of projectors on HA which sum to the identity. Alice sends
2 Basically, G represents the information that needs to be sent and H represents the information that survives the

channel. A homomorphism G→ H ensures that the needed information makes it through the channel intact.
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the measurement outcome s through the channel N to Bob, who receives some v ∈ V such that
N (v|s) > 0. Bob then measures his half of the entangled state using a projective measurement
depending on v and his side information u. An entanglement assisted zero-error (1, 1)-coding scheme
is one in which Bob is able to determine x with zero chance of error; an entanglement assisted
zero-error (m,n)-coding scheme involves sending m independent samples of the source using n copies
of the channel.

After Alice’s measurement, Bob’s half of the entanglement resource is in the state

ρxs = TrA{(Mx
s ⊗ I)|ψ〉 〈ψ|}.

An error free decoding operation exists for Bob if and only if these states are orthogonal for every
x ∈ X consistent with the information in Bob’s possession (i.e. u and v). We then have the following
necessary and sufficient condition [BBL+13]. Let G be the characteristic graph of the source and H
be the distinguishability graph of the channel. There must be a bipartite pure state |ψ〉 ∈ HA ⊗HB
for some Hilbert spaces HA and HB , and for each x ∈ X there must be a projective decomposition
of the identity {Mx

s }s∈S on HA such that

ρxs ⊥ ρyt for all x ∼G y and s 6∼H t,

where orthogonality is in terms of the Hilbert–Schmidt inner product.
Recall that without entanglement a zero-error (1, 1)-coding scheme was possible if and only if

G→ H. By analogy we say there is an entanglement assisted homomorphism G
∗→ H when there

exists an entanglement assisted zero-error (1, 1)-coding scheme:

Definition 4.1. Let G and H be graphs. There is an entanglement assisted homomorphism from G
to H, written G ∗→ H, if there is a bipartite state |ψ〉 ∈ HA ⊗HB (for some Hilbert spaces HA and
HB) and, for each x ∈ V (G), a projective decomposition of the identity {Mx

s }s∈V (H) on HA such
that

ρxs ⊥ ρyt for all x ∼G y and s 6∼H t, (4.4)

where

ρxs := TrA{(Mx
s ⊗ I)|ψ〉 〈ψ|}. (4.5)

Analogous to (4.2), there is an entanglement assisted (m,n)-coding scheme if and only if G�m ∗→
H∗n. The entangled cost rate [BBL+13] is analogous to (4.3),

η∗(G,H) = lim
m→∞

1

m
min

{
n : G�m ∗→ H∗n

}
. (4.6)

In the absence of side information (i.e. with U being a singleton set), G becomes the complete graph.
We saw above that without entanglement and without side information, n distinct codewords can be
sent error-free through a noisy channel if and only if Kn → H; the largest such n is ω(H) = α(H).
With the help of entanglement the largest number of codewords is the largest n such that Kn

∗→ H;
this defines the entanglement assisted independence number, α∗(H). Since an entanglement resource
never hurts, α∗(H) ≥ α(H) always. In some cases α∗(H) can be strictly larger than α(H) [CLMW10].

We saw above that α(H) ≤ ϑ̄(H). Indeed, this was the original application of ϑ̄. Beigi showed
that also α∗(H) ≤ ϑ̄(H) [Bei10] (this has been generalized to quantum channels as well [DSW13];
however, we consider here only classical channels). Beigi proved his bound by showing that if n
distinct codewords can be sent through a noisy channel with zero-error using entanglement (Kn

∗→ H
in our notation) then there are vectors |w〉 6= 0 and |wxs 〉 with x ∈ {1, . . . , n} and s ∈ V (H) such
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that3

∑

s

|wxs 〉 = |w〉 (4.7)

〈wxs |wyt 〉 = 0 for all x 6= y, s 6∼H t (4.8)
〈wxs |wxt 〉 = 0 for all s 6= t. (4.9)

Denote by β(H) the largest n such that vectors of this form exist. Then β(H) ≥ α∗(H). Beigi showed
that the existence of such vectors implies n ≤ ϑ̄(H), therefore α∗(H) ≤ β(H) ≤ ϑ̄(H). Since ϑ is
multiplicative under the strong graph product, ϑ̄(H) is in fact an upper bound on the entanglement
assisted Shannon capacity. Beigi left open the question of whether β(H) was equal to bϑ̄(H)c. We
will answer this question in the affirmative (corollary 4.7).

In fact, we show something more general. We generalize Beigi’s vectors so that they apply to the
source-channel coding problem (i.e. with G not necessarily being Kn) and give a bound in terms
of the Lovász ϑ number. The conditions we will introduce can be thought of as a relaxation of the
condition (4.4), which defines G ∗→ H. A related but different relaxation will give bounds in terms
of two variations of the Lovász number: the Schrijver number [Sch79,MRRJ78] and the Szegedy
number [Sze94]. We denote the first relaxation G B→ H since it generalizes Beigi’s condition, and
denote the second G +→ H since it contains a positivity condition. A third relaxation, G V→ H, is
defined here but the significance is discussed later.

Definition 4.2. Let G and H be graphs. Write G B→ H if there are vectors |w〉 6= 0 and |wxs 〉 ∈ Cd
for each x ∈ V (G), s ∈ V (H), for some d ∈ N, such that

1.
∑
s |wxs 〉 = |w〉

2. 〈wxs |wyt 〉 = 0 for all x ∼G y, s 6∼H t

3. 〈wxs |wxt 〉 = 0 for all s 6= t.

Write G +→ H if there are vectors satisfying

1.
∑
s |wxs 〉 = |w〉

2. 〈wxs |wyt 〉 = 0 for all x ∼G y, s 6∼H t

3. 〈wxs |wyt 〉 ≥ 0.

Write G V→ H if there are vectors satisfying the conditions for both G B→ H and G +→ H, i.e.,

1.
∑
s |wxs 〉 = |w〉

2. 〈wxs |wyt 〉 = 0 for all x ∼G y, s 6∼H t

3. 〈wxs |wxt 〉 = 0 for all s 6= t

4. 〈wxs |wyt 〉 ≥ 0.

Without loss of generality one could consider only real vectors, since complex vectors can be
turned real via the recipe |ŵxs 〉 = Re(|wxs 〉)⊕ Im(|wxs 〉) while preserving the inner product properties
required by the above definitions.

It is enlightening to consider the Gram matrices of the |wxs 〉 vectors. In fact, it is this formulation
that will be used to prove our main theorems.

3 Recall that we take H to be the confusability graph rather than H. So Beigi’s definition is worded differently.
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Theorem 4.3. G B→ H if and only if there is a positive semidefinite matrix C : L(C|V (G)|) ⊗
L(C|V (H)|) satisfying

∑

s,t

Cxyst = 1 (4.10)

Cxyst = 0 for x ∼G y and s 6∼H t (4.11)
Cxxst = 0 for s 6= t. (4.12)

G
+→ H if and only if there is a positive semidefinite matrix satisfying (4.10), (4.11), and

Cxyst ≥ 0. (4.13)

G
V→ H if and only if there is a positive semidefinite matrix satisfying (4.10)-(4.13).

Proof. We prove only the G B→ H claim; the proofs for G +→ H and G
V→ H are analogous.

Suppose G B→ H and let |w〉 and |wxs 〉 be the vectors described in definition 4.2. Without loss of
generality rescale so that 〈w|w〉 = 1. Define the matrix C : L(C|V (G)|) ⊗ L(C|V (H)|) with entries
Cxyst = 〈wxs |wyt 〉 for x, y ∈ V (G) and s, t ∈ V (H). Since C is a Gram matrix, it is positive
semidefinite. Properties (4.10)-(4.12) follow directly from the three properties listed in definition 4.2
for G B→ H (the first of these uses 〈w|w〉 = 1).

For the converse, note that any positive semidefinite matrix C : L(C|V (G)|) ⊗ L(C|V (H)|) is
a Gram matrix of some vectors |wxs 〉. The three properties of definition 4.2 for G B→ H follow
from (4.10)-(4.12). Only the first of these is nontrivial. We have that for all x, y ∈ V (G),

1 =
∑

st

Cxyst =
∑

st

〈wxs |wyt 〉 =

(∑

s

〈wxs |
)(∑

t

|wyt 〉
)
.

For x = y, the above implies that
∑
s |wxs 〉 is a unit vector for all x. These unit vectors must have

unit inner product amongst themselves by the x 6= y cases above, and therefore they must all be the
same vector. Call this |w〉. Clearly |w〉 6= 0.

It is interesting to note that a matrix with properties (4.10), (4.11), and (4.13) (those associated
with G +→ H) can be interpreted as a conditional probability distribution, P (s, t|x, y) = Cxyst. With
this interpretation, G +→ H if and only if there exists a conditional probability distribution P (s, t|x, y)
such that Csx;ty = P (s, t|x, y) is a positive semidefinite matrix and P (s ∼H t|x ∼G y) = 1. A similar
interpretation holds for G V→ H.

We now show that G B→ H and G +→ H are indeed relaxations of G ∗→ H (the significance of
G

V→ H will be explained later). Since definition 4.2 reduces to Beigi’s criteria when considering
Kn

B→ H, the argument that follows provides an alternative and simpler proof of Beigi’s result that
α∗(H) ≤ β(H).

Theorem 4.4. If G ∗→ H then G B→ H and G +→ H.

Proof. (G ∗→ H =⇒ G
B→ H): Suppose that G ∗→ H. Let |ψ〉 and Mx

s for x ∈ V (G) and s ∈ V (H)
satisfy condition (4.4) (with ρxs given by (4.5)). Define |w〉 = |ψ〉 and

|wxs 〉 = (Mx
s ⊗ I) |ψ〉 .
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Since {Mx
s }s∈S is a projective decomposition of the identity,

∑

s

Mx
s = I =⇒

∑

s

|wxs 〉 = |w〉 ,

Mx
sM

x
t = 0 =⇒ 〈wxs |wxt 〉 = 0 for s 6= t.

For all x ∼G y and s 6∼H t, condition (4.4) gives that the reduced density operators (tracing over
HA) of the post-measurement states (Mx

s ⊗ I) |ψ〉 and (My
t ⊗ I) |ψ〉 are orthogonal. But this is only

possible if the pure states (without tracing out HA) are orthogonal. So,
〈
ψ
∣∣(Mx

s ⊗ I)†(My
t ⊗ I)

∣∣ψ
〉

= 0 =⇒ 〈wxs |wyt 〉 = 0.

(G ∗→ H =⇒ G
+→ H): Suppose that G ∗→ H. Let |ψ〉 and Mx

s for x ∈ V (G) and s ∈ V (H)
satisfy condition (4.4) (with ρxs given by (4.5)). Define |wxs 〉 to be the vectorization of the post-
measurement reduced density operator,

|wxs 〉 = vec(ρxs ).

Since {Mx
s }s∈S sum to identity,

∑

s

|wxs 〉 = vec

(∑

s

TrA{(Mx
s ⊗ I)|ψ〉 〈ψ|}

)

= vec(TrA{|ψ〉 〈ψ|}) =: |w〉 .

For all x ∼G y and s 6∼H t, condition (4.4) gives 〈wxs |wyt 〉 = 0. Density operators are positive, giving
positive inner products 〈wxs |wyt 〉 ≥ 0.

4.4 Monotonicity theorems
Our main results concern monotonicity properties of the Lovász number ϑ, Schrijver number ϑ′, and
Szegedy number ϑ+ for graphs that are related by the generalized homomorphisms of definition 4.2.
These will lead to various bounds relevant to entanglement assisted zero-error source-channel coding.
These three quantities are defined as follows.

Definition 4.5. In this definition we use real matrices. For convenience we state the definitions in
terms of the complement of a graph, since this form is used throughout the theorems.

The Lovász number of the complement, ϑ̄(G) := ϑ(G), is given by either of the following two
semidefinite programs, which are equivalent [Lov79,Knu94,Lov03]:

ϑ̄(G) = max{‖I + T‖ : I + T � 0,

Tij = 0 for i 6∼ j}, (4.14)
ϑ̄(G) = min{λ : ∃Z � 0, Zii = λ− 1,

Zij = −1 for i ∼ j}, (4.15)

where ‖·‖ denotes the operator norm (the largest singular value) and � 0 means that a matrix is
positive semidefinite. The Schrijver number of the complement, ϑ̄′(G) := ϑ′(G), (sometimes written
ϑ−) is [Sch79,MRRJ78]

ϑ̄′(G) = min{λ : ∃Z � 0, Zii = λ− 1,

Zij ≤ −1 for i ∼ j}. (4.16)
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The Szegedy number of the complement, ϑ̄+(G) := ϑ+(G), is [Sze94]

ϑ̄+(G) = min{λ : ∃Z � 0, Zii = λ− 1,

Zij = −1 for i ∼ j,
Zij ≥ −1 for all i, j}. (4.17)

Clearly ϑ̄′(G) ≤ ϑ̄(G) ≤ ϑ̄+(G).

Our first result is that G B→ H exactly characterizes ordering of ϑ̄. This will lead to a bound on
entanglement assisted cost rate.

Theorem 4.6. G B→ H ⇐⇒ ϑ̄(G) ≤ ϑ̄(H).

Proof. (⇐=): Suppose ϑ̄(G) ≤ ϑ̄(H). We will explicitly construct a matrix C � 0 satisfying
properties (4.10)-(4.12) of theorem 4.3. Let λ = ϑ̄(H). By definition, there is a matrix T such that
‖I + T‖ = λ, I + T � 0, and Tst = 0 for s 6∼ t. With |ψ〉 denoting the vector corresponding to the
largest eigenvalue of I + T , and with ◦ denoting the Schur–Hadamard (i.e. entrywise) product, define
the matrices

D = |ψ〉 〈ψ| ◦ I,
B = |ψ〉 〈ψ| ◦ (I + T ).

With J being the all-ones matrix and 〈·, ·〉 denoting the Hilbert–Schmidt inner product, it is readily
verified that

〈D,J〉 = 〈ψ|ψ〉 = 1,

〈B, J〉 = 〈ψ|I + T |ψ〉 = λ.

Since the Schur–Hadamard product of two matrices is a principal submatrix of their tensor product,
this operation preserves positive semidefiniteness. As a consequence, B � 0 and

‖I + T‖ = λ =⇒ λI − (I + T ) � 0 =⇒ λD −B � 0.

Since λ ≥ ϑ̄(G), there is a matrix Z such that Z � 0, Zxx = λ− 1 for all x, and Zxy = −1 for all
x ∼G y. Note that definition 4.5 gives existence of a matrix with ϑ̄(G)− 1 on the diagonal, but since
λ ≥ ϑ̄(G) we can add a multiple of the identity to get λ− 1 on the diagonal.

We now construct C. Define

C = λ−1
[
J ⊗B + (λ− 1)−1Z ⊗ (λD −B)

]
.

Since J , B, Z, and λD −B are all positive semidefinite, and λ− 1 ≥ 0, we have that C is positive
semidefinite. The other desired conditions on C are easy to verify. For all x, y we have

∑

st

Cxyst = λ−1
[
〈B, J〉+ (λ− 1)−1Zxy[λ〈D,J〉 − 〈B, J〉]

]

= 1.

Note that the J in the above equation is indexed by V (H), whereas the J in the definition of C is
indexed by V (G). For x ∼G y and s 6∼H t,

Cxyst = λ−1
[
Bst + (λ− 1)−1Zxy(λDst −Bst)

]

= λ−1
[
Bst + (λ− 1)−1(−1)(λBst −Bst)

]
= 0.

89



For all x and for s 6= t,

Cxxst = λ−1
[
Bst + (λ− 1)−1Zxx(λDst −Bst)

]

= λ−1 [Bst + (0−Bst)] = 0.

(=⇒): Suppose G B→ H. By theorem 4.3, there is a matrix C � 0 satisfying properties (4.10)-
(4.12). Let Z achieve the optimal value (call it λ) for the minimization (4.15) for ϑ̄(H). We will
provide a feasible solution for (4.15) for ϑ̄(G) to show that ϑ̄(G) ≤ λ = ϑ̄(H). To this end, let |1〉 be
the all ones vector and define

Y =
(
I ⊗ 〈1|

)[(
J ⊗ Z

)
◦ C
](
I ⊗ |1〉

)
.

Since C � 0 and Z � 0, and positive semidefiniteness is preserved by conjugation, we have that
Y � 0. Also note that

Yxy =
∑

st

ZstCxyst.

Using the fact that Zss = λ− 1 and Cxxst = 0 for s 6= t, we have

Yxx =
∑

st

ZstCxxst = (λ− 1)
∑

st

Cxxst = λ− 1.

Using the fact that Zst = −1 for s ∼H t and Cxyst = 0 for x ∼G y, s 6∼H t, we have that for x ∼G y,

Yxy =
∑

st

ZstCxyst =
∑

s∼Ht
ZstCxyst = (−1)

∑

s∼Ht
Cxyst

= (−1)
∑

st

Cxyst = −1.

Now define a matrix Y ′ consisting of the real part of Y (i.e. with coefficients Y ′xy = Re[Yxy]). This
matrix is real, positive semidefinite,4 and satisfies Yxx = λ − 1 for all x and Yxy = −1 for x ∼ y.
Therefore Y ′ is feasible for (4.15) with value λ = ϑ̄(H). Since ϑ̄(G) is the minimum possible value
of (4.15), we have ϑ̄(G) ≤ ϑ̄(H).

We are now prepared to answer in the affirmative an open question posed by Beigi [Bei10].

Corollary 4.7. Let β(H) be the largest n such that there exist vectors |w〉 6= 0 and |wxs 〉 with
x ∈ {1, . . . , n} and s ∈ V (H) which satisfy conditions (4.7)-(4.9). Then β(H) = bϑ̄(H)c.

Proof. Considering Kn
B→ H, the conditions of definition 4.2 are equivalent to (4.7)-(4.9). Since

ϑ̄(Kn) = n, theorem 4.6 gives Kn
B→ H ⇐⇒ n ≤ ϑ̄(H). Since β(H) is the largest n such that

Kn
B→ H, we have that β(H) = bϑ̄(H)c.

A related corollary can be formed by considering G B→ Kn rather than Kn
B→ H. This defines a

set of vectors |wxs 〉 satisfying conditions in some sense complementary to Beigi’s (4.7)-(4.9). Now we
approach ϑ from above:

Corollary 4.8. Let βχ(G) be the smallest n such that there exist vectors |w〉 6= 0 and |wxs 〉 with
x ∈ V (G) and s ∈ {1, . . . , n} for which

1.
∑
s |wxs 〉 = |w〉

4 The entrywise complex conjugate of a positive semidefinite matrix is positive semidefinite, so Y ′ = (Y +
conj(Y ))/2 � 0.

90



2. 〈wxs |wys 〉 = 0 for all x ∼G y

3. 〈wxs |wxt 〉 = 0 for all s 6= t.

Then βχ(G) = dϑ̄(G)e.

Proof. Considering G B→ Kn, the conditions of definition 4.2 are equivalent to the conditions stated
above. Since ϑ̄(Kn) = n, theorem 4.6 gives G B→ Kn ⇐⇒ ϑ̄(G) ≤ n. Since βχ(G) is the smallest n
such that G B→ Kn, we have βχ(G) = dϑ̄(G)e.

Corollary 4.9. The entanglement assisted cost rate is bounded as follows:

η∗(G,H) ≥ log ϑ̄(G)

log ϑ̄(H)
.

Proof. Since ϑ̄(G�m) = ϑ̄(G)m [Knu94] and ϑ̄(H∗n) = ϑ̄(H)n [Lov79], it follows that

G�m ∗→ H∗n =⇒ G�m B→ H∗n (by theorem 4.4)

=⇒ ϑ̄(G�m) ≤ ϑ̄(H∗n) (by theorem 4.6)
=⇒ ϑ̄(G)m ≤ ϑ̄(H)n

=⇒ log ϑ̄(G)

log ϑ̄(H)
≤ n

m
.

Therefore,

η∗(G,H) = lim
m→∞

min
n

{ n
m

: G�m ∗→ H∗n
}
≥ log ϑ̄(G)

log ϑ̄(H)
.

Something similar to theorem 4.6 holds for the relation G +→ H. In this case there is an inequality
not just for the Lovász ϑ number but also for Schrijver’s ϑ′ and Szegedy’s ϑ+. Unfortunately, this
will no longer be an if-and-only-if statement (but see theorem 4.13 for a weakened converse, and
appendix 4.B for a somewhat more complicated if-and-only-if involving ϑ̄′).

Theorem 4.10. Suppose G +→ H. Then ϑ̄(G) ≤ ϑ̄(H), ϑ̄′(G) ≤ ϑ̄′(H), and ϑ̄+(G) ≤ ϑ̄+(H).

Proof. As per theorem 4.3, let C be a positive semidefinite matrix satisfying properties (4.10), (4.11),
and (4.13). We give the proof for ϑ̄′(G) ≤ ϑ̄′(H); the others are proved in a similar way. The proof
is very similar to that of theorem 4.6, with slight modification due to the fact that the last condition
on C is different. Let Z achieve the optimal value for the minimization program (4.16) for ϑ̄′(H).
We will provide a feasible solution for (4.16) for ϑ̄′(G) to show that ϑ̄′(G) ≤ ϑ̄′(H). Specifically, let
Yxy =

∑
st ZstCxyst. Since C and Z are positive semidefinite, so is Y .

A feasible solution for (4.16), with value ϑ̄′(H), requires Yxx = ϑ̄′(H)− 1. However, it suffices to
show Yxx ≤ ϑ̄′(H)− 1 since equality can be achieved by adding a non-negative diagonal matrix to Y .
We have

Yxx =
∑

st

ZstCxxst

≤ max
st
|Zst|

∑

st

Cxxst (since Cxxst ≥ 0)

≤ max
s
|Zss|

∑

st

Cxxst (since Z � 0)

= ϑ̄′(H)− 1.
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Similarly, for x ∼G y we have

Yxy =
∑

st

ZstCxyst =
∑

s∼Ht
ZstCxyst

≤ (−1)
∑

s∼Ht
Cxyst = (−1)

∑

st

Cxyst = −1. (4.18)

Therefore Y is feasible for (4.16) with value λ = ϑ̄′(H). Since ϑ̄′(G) is the minimum possible value
of (4.16), we have ϑ̄′(G) ≤ ϑ̄′(H).

To show ϑ̄(G) ≤ ϑ̄(H) or ϑ̄+(G) ≤ ϑ̄+(H), replace inequality with equality in (4.18). For
ϑ̄+(G) ≤ ϑ̄+(H) we have Zst ≥ −1 for all s, t and need to show Yxy ≥ −1 for all x, y. This is readily
verified:

Yxy =
∑

st

ZstCxyst ≥ (−1)
∑

st

Cxyst = −1.

It is well known that α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G). We show that similar inequalities
hold for the entanglement assisted independence and chromatic numbers. Since ϑ′ and ϑ+ are not
multiplicative under the required graph products (appendix 4.A), these do not lead to bounds on
asymptotic quantities such as entanglement assisted Shannon capacity or entanglement assisted cost
rate.

Corollary 4.11. α∗(H) ≤ ϑ′(H).

Proof. By definition α∗(H) is the largest n such that Kn
∗→ H. But Kn

∗→ H =⇒ Kn
+→ H =⇒

ϑ̄′(Kn) ≤ ϑ′(H). Since ϑ̄′(Kn) = n, the conclusion follows.

The following corollary was already shown in [BBL+13] via a different method.

Corollary 4.12. Define χ∗(G) to be the smallest n such that G ∗→ Kn. Then χ∗(G) ≥ ϑ̄+(G).

Proof. By definition, χ∗(G) is the smallest n such that G ∗→ Kn. But G
∗→ Kn =⇒ G

+→ Kn =⇒
ϑ̄+(G) ≤ ϑ̄+(Kn) = n.

It would be nice to have a converse to theorem 4.10, like there was with theorem 4.6. Is it the case
that ϑ̄(G) ≤ ϑ̄(H), ϑ̄′(G) ≤ ϑ̄′(H), and ϑ̄+(G) ≤ ϑ̄+(H) together imply G +→ H? We do not know.
However, it is the case that ϑ̄+(G) ≤ ϑ̄′(H) =⇒ G

+→ H. In fact, something stronger can be said.
We have the following theorem, the consequences of which will be further explored in section 4.5.

Theorem 4.13. ϑ̄+(G) ≤ ϑ̄′(H) =⇒ G
V→ H.

Proof. The proof mirrors that of the (⇐=) portion of theorem 4.6, so we only describe the differences.
Let λ = ϑ̄′(H). Theorem 4.29 in appendix 4.B gives that

ϑ̄′(H) = max{‖I + T‖ : I + T � 0,

Tst = 0 for s 6∼ t,
Tst ≥ 0 for all s, t}.

So there is a matrix T such that ‖I + T‖ = λ, I + T � 0, Tst = 0 for s 6∼ t, and Tst ≥ 0 for all
s, t. Since λ ≥ ϑ̄+(G), there is a matrix Z such that Z � 0, Zxx = λ− 1 for all x, Zxy = −1 for all
x ∼G y, and Zxy ≥ −1 for all x, y. Note that T and Z satisfy all conditions required by theorem 4.6
plus the additional conditions Tst ≥ 0 for all s, t and Zxy ≥ −1 for all x, y.
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Define B and D as in theorem 4.6. The eigenvector |ψ〉 corresponding to the maximum eigenvalue
of I +T can be chosen to be entrywise non-negative (this follows from the Perron–Frobenius theorem
and the fact that I + T is entrywise non-negative). It follows that B can be chosen entrywise
non-negative. As before, define

C = λ−1
[
J ⊗B + (λ− 1)−1Z ⊗ (λD −B)

]
.

Since T and Z satisfy all conditions needed by theorem 4.6, C satisfies (4.10)-(4.12). To get G V→ H
it remains only to show satisfaction of (4.13): Cxyst ≥ 0 for all x, y, s, t. When s = t,

Cxyss = λ−1[Dss + (λ− 1)−1Zxy(λDss −Dss)]

= λ−1(1 + Zxy)Dss ≥ 0.

The last inequality follows from Zxy ≥ −1 and Dss ≥ 0. When s 6= t,

Cxyst = λ−1[Bst + (λ− 1)−1Zxy(0−Bst)]
= λ−1(λ− 1)−1[(λ− 1)− Zxy]Bst ≥ 0.

The last inequality follows from Zxy ≤ max{Zxx, Zyy} = λ− 1 (since Z � 0) and Bst ≥ 0.

Finally, we show that the two conditions G +→ H and G B→ H are not equivalent: the second one
is weaker.

Theorem 4.14. If G +→ H then G B→ H, but there are graphs for which the converse does not hold.

Proof. The forward implication is an immediate consequence of theorems 4.6 and 4.10:

G
+→ H =⇒ ϑ̄(G) ≤ ϑ̄(H) =⇒ G

B→ H.

To see that the converse does not hold, take H to be any graph such that bϑ̄′(H)c < bϑ̄(H)c. For
example, a graph with ϑ̄′(H) = 4 but ϑ̄(H) = 16/3 > 5 is given at the end of [Sch79]. Then
5 = ϑ̄(K5) ≤ ϑ̄(H) =⇒ K5

B→ H but 5 = ϑ̄′(K5) > ϑ̄′(H) =⇒ K5 6 +→ H.

4.5 Quantum homomorphisms

Suppose Alice and Bob share an entangled state |ψ〉 ∈ HA ⊗ HB on Hilbert spaces of arbitrary
dimension. A referee asks Alice a question x ∈ X and Bob a question y ∈ Y . Based on x, Alice
performs a (without loss of generality, projective) measurement {Exs }s and reports outcome s ∈ S
to the referee. Similarly, Bob performs measurement {F yt }t and reports t ∈ T . The sets X,Y, S, T
are finite. The probability distribution of Alice and Bob’s answer, conditioned upon the referee’s
question, is

P (s, t|x, y) = 〈ψ|Exs ⊗ F yt |ψ〉 (4.19)

where
∑
sE

x
s = I,

∑
t F

y
t = I, and 〈ψ|ψ〉 = 1.

The assumption that Alice and Bob’s measurements take such a tensor product form is associated
with non-relativistic quantum mechanics. One may alternatively consider a model in which there is
only a single Hilbert space, |ψ〉 ∈ HA and Exs , F

y
t ∈ L(HA), but in which each Exs commutes with

each F yt . The conditional probability distribution in this model is

P (s, t|x, y) = 〈ψ|ExsF yt |ψ〉 . (4.20)
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Tsirelson’s problem is the question of whether these two models differ. That is to say, is there a
conditional probability distribution realizable as (4.20) but not as (4.19)? Tsirelson showed that if the
Hilbert spaces are finite dimensional then the two models are the same. A simplified proof appears
in [SW08]. In addition to its importance to quantum mechanics, Tsirelson’s problem is of mathematical
interest since it is closely related to Connes’ embedding problem [JNP+11]. Note that any correlation
of the form (4.19) can be written in the form (4.20) since 〈ψ|Exs ⊗ F yt |ψ〉 = 〈ψ|(Exs ⊗ I)(I ⊗ F yt )|ψ〉
and Exs ⊗ I commutes with I ⊗ F yt .

Graph G is said to have a quantum homomorphism to H (written G q→ H) if there is a probability
distribution of the form (4.19), with X = Y = V (G), S = T = V (H), and finite dimensional |ψ〉,
satisfying [RM12]

P (s 6= t|x = y) = 0

P (s 6∼H t|x ∼G y) = 0. (4.21)

This is called a “quantum homomorphism” because if Alice and Bob are not allowed to share an
entangled state [equivalently, if dim(HA) = dim(HB) = 1] then such a conditional probability
distribution is achievable if and only if G → H. Although G

q→ H =⇒ G
∗→ H, it is an open

question whether the converse holds.
In [RM12] it is shown that G q→ H if and only if there exist projection operators (i.e., Hermitian

matrices with eigenvalues in {0, 1}) Exs for x ∈ V (G) and s ∈ V (H) such that
∑

s

Exs = I

ExsE
y
t = 0 for all x ∼G y, s 6∼H t

ExsE
x
t = 0 for all s 6= t.

Note that the first condition actually implies the third. Define |wxs 〉 = vec(Exs ). Since 〈wxs |wyt 〉 =

Tr(ExsE
y
t ), this gives a set of vectors satisfying the conditions of definition 4.2 for G V→ H. So

G
q→ H =⇒ G

V→ H. Since G V→ H =⇒ G
+→ H, theorem 4.10 gives the following corollary which

was previously shown in [Rob13].

Corollary 4.15. Suppose G q→ H. Then ϑ̄(G) ≤ ϑ̄(H), ϑ̄′(G) ≤ ϑ̄′(H), and ϑ̄+(G) ≤ ϑ̄+(H).

The quantum chromatic number χq(G) is the least n such that G q→ Kn, in analogy to the
chromatic number χ(G) which is the least n such that G→ Kn. As a means of studying Tsirelson’s
problem, a number of variations of χq were considered in [PT13]. For instance, they define χqr by
taking the correlation model to be (4.20) with infinite dimensional |ψ〉 rather than (4.19) with finite
dimensional |ψ〉 as was used to define G q→ H (and thus χq). Also, they consider a semidefinite
relaxation χvect. In the language of our paper, χvect(G) is the least n such that G V→ Kn. In fact,
our G V→ H definition was inspired by their work5. One could also define ωvect(H) as the largest n
such that Kn

V→ H. Both χvect(G) and ωvect(H) can be computed using the tools of section 4.4.

Corollary 4.16. χvect(G) = dϑ̄+(G)e and ωvect(H) = bϑ̄′(H)c.

Proof. Theorem 4.13 gives (for integer n) ϑ̄+(G) ≤ n =⇒ G
V→ Kn and n ≤ ϑ̄′(H) =⇒ Kn

V→ H.
Theorem 4.10 gives the converse, so ϑ̄+(G) ≤ n ⇐⇒ G

V→ Kn and n ≤ ϑ̄′(H) ⇐⇒ Kn
V→ H.

The authors of [PT13] posed the question of whether χvect(G) = χq(G), that is to say whether
χq is equivalent to its semidefinite relaxation. In fact, these two quantities are not equal.

5 The first version of the present paper was posted before [PT13]. We later amended this paper to address the
question posed in [PT13].
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Theorem 4.17. There is a graph G such that χvect(G) < χq(G). Therefore G V→ H does not imply
G

q→ H.

Proof. In light of corollary 4.16, the goal is to find G such that dϑ̄+(G)e < χq(G). The projective
rank of a graph, ξf (G), is the infimum of d/r such that the vertices of a graph can be assigned rank-r
projectors in Cd such that adjacent vertices have orthogonal projectors. Since ξf (G) ≤ χq(G) [Rob13],
it suffices to find a gap between dϑ̄+(G)e and ξf (G).

The five cycle has ϑ̄+(C5) =
√

5 < ξf (C5) = 5/2 [Rob13]. But this is not enough since
d
√

5e = 3 > 5/2. Fortunately, we can amplify the difference by taking the disjunctive product with
a complete graph. ϑ̄+ is sub-multiplicative under disjunctive product, as feasible solutions Z + J
to (4.17) can be combined by tensor product. Theorem 4.27 states that ξf is multiplicative under
the disjunctive (and lexicographical) product, so

⌈
ϑ̄+(C5 ∗K3)

⌉
≤
⌈
3
√

5
⌉

= 7 < 3 · 5

2
= ξf (C5 ∗K3).

Subsequently, this result has been strengthened to χvect(G) < χqr(G) [PSS+14].

4.6 Conclusion
Beigi provided a vector relaxation of the entanglement assisted zero-error communication problem,
leading to an upper bound on the entanglement assisted independence number: α∗ ≤ bϑc [Bei10]. We
generalized Beigi’s construction to apply it to entanglement assisted zero-error source-channel coding,
defining a relaxed graph homomorphism G

B→ H. This ends up exactly characterizing monotonicity
of ϑ, and shows that ϑ can be used to provide a lower bound on the cost rate for entanglement
assisted source-channel coding. As a corollary we answer in the affirmative an open question posed
by Beigi of whether a quantity β that he defined is equal to bϑc. Applying a Beigi-style argument
to chromatic number rather than independence number yields a quantity analogous to β which is
equal to dϑe. We defined a similar (and stronger) relaxation, G +→ H, which yields bounds involving
Schrijver’s number ϑ′ and Szegedy’s number ϑ+. This leads to a stronger bound on entanglement
assisted independence number: α∗ ≤ bϑ′c. In addition to these new bounds, we reproduce previously
known bounds from [Bei10,BBL+13,RM12,Rob13]. We also answer an open question from [PT13]
regarding the relation of the quantum chromatic number to its semidefinite relaxation.

A number of open questions remain. Since there is a graph for which ϑ′ < ϑ − 1 [Sch79], our
bound α∗ ≤ bϑ′c shows a gap between one-shot entanglement assisted zero-error capacity and bϑc.
However, since ϑ′ is not multiplicative, it is still not known whether there can be a gap between the
asymptotic capacity (i.e. the entanglement assisted Shannon capacity) and ϑ. To show such a gap
requires a stronger bound on entanglement assisted Shannon capacity. Haemers provided a bound
on Shannon capacity which is sometimes stronger than Lovász’ bound [Hae78,Hae79,Alo98,Pee96];
however, this bound does not apply to the entanglement assisted case [LMM+12].

The standard notion of graph homomorphism, along with two of its quantum generalizations,
and our three relaxations, form a hierarchy as outlined in fig. 4.3. In some cases we do not know
whether converses hold. G ∗→ H is equivalent to G q→ H if and only if projective measurements and a
maximally entangled state always suffice for entanglement assisted zero-error source-channel coding.
Equivalence between G ∗→ H and G +→ H seems unlikely but would have two important consequences.
First, we would have a much simpler characterization (vector rather than operator) of entanglement
assisted homomorphisms and, in particular, entanglement assisted zero-error communication. Second,
since G V→ H =⇒ G

+→ H, the gap that we found between G q→ H and G V→ H would give a gap
between G q→ H and G ∗→ H.
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G→ H

G
q→ H ϑ̄+(G) ≤ ϑ̄′(H)

G
∗→ H G

V→ H

G
+→ H

ϑ̄(G) ≤ ϑ̄(H)
ϑ̄′(G) ≤ ϑ̄′(H)
ϑ̄+(G) ≤ ϑ̄+(H)

G
B→ Hϑ̄(G) ≤ ϑ̄(H)

Figure 4.3: Implications between various conditions discussed in this paper. Double ended arrows
mean if-and-only-if, solid arrows mean the converse is known to not hold, and dotted arrows mean
we do not know whether the converse holds.

After completing this work, we became aware of a previous investigation of a similar problem.
Semidefinite relaxations of the homomorphism game (outside of the quantum context) were investi-
gated in [FL92], and this was further developed in [BM95]. What they call a hoax corresponds to
our G V→ H, and what they call a semi-hoax corresponds to our G B→ H. Though they studied the
same problem, they reached a different conclusion: they showed (using our terminology)

G
B→ H ⇐⇒ ϑ̄(G ◦H) = |V (G)| (4.22)

G
V→ H ⇐⇒ ϑ̄′(G ◦H) = |V (G)| (4.23)

where ◦ denotes the hom-product with vertices V (G)× V (H) and edges

(x, s) ∼ (y, t) ⇐⇒ (x 6= y) and (x ∼ y =⇒ s ∼ t).

Combining our theorem 4.6 with (4.22) gives ϑ̄(G ◦H) = |V (G)| ⇐⇒ ϑ̄(G) ≤ ϑ̄(H) and combining
theorems 4.10 and 4.13 with (4.23) gives

ϑ̄+(G) ≤ ϑ̄′(H) =⇒ ϑ̄′(G ◦H) = |V (G)|
=⇒ ϑ̄(G) ≤ ϑ̄(H), ϑ̄′(G) ≤ ϑ̄′(H),

ϑ̄+(G) ≤ ϑ̄+(H).

Considering the special case H = Kn, we have G ◦ Kn = G � Kn (Cartesian product) giving
ϑ̄(G � Kn) = |V (G)| ⇐⇒ ϑ̄(G) ≤ n and ϑ̄′(G � Kn) = |V (G)| ⇐⇒ ϑ̄+(G) ≤ n, reproducing
Theorem 2.7 of [GL08].
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4.A Multiplicativity
In Lovász’ original paper [Lov79] on the ϑ function, he proved that

ϑ(G�H) = ϑ(G)ϑ(H),

i.e. ϑ is multiplicative with respect to the strong product. To do this he proved the following two
inequalities:

ϑ(G)ϑ(H) ≤ ϑ(G�H) ≤ ϑ(G)ϑ(H).

This sufficed for Lovász because it was only required to show that ϑ is multiplicative with respect to
the strong product in order to prove that it was an upper bound on Shannon capacity. However,
Lovász also noted that his proof of the first inequality above also proves the following stronger
statement:

ϑ(G)ϑ(H) ≤ ϑ(G ∗H).

Together these inequalities imply that ϑ is multiplicative with respect to both the strong and
disjunctive products. Our aim in this appendix is to show that ϑ′ is not multiplicative with respect
to the strong product and ϑ+ is not multiplicative with respect to the disjunctive product, but ϑ′ is
multiplicative with respect to the disjunctive product. Also we will show multiplicativity of projective
rank ξf .

4.A.1 Counterexamples
Some of the inequalities involving ϑ above can be proved for ϑ′ as well. Adapting Lovász’ proof of
the analogous statement for ϑ, it can be shown that

ϑ′(G�H) ≥ ϑ′(G ∗H) ≥ ϑ′(G)ϑ′(H).

Similarly, it can be shown that

ϑ+(G ∗H) ≤ ϑ+(G�H) ≤ ϑ+(G)ϑ+(H).

Therefore, in order to show that neither ϑ′ or ϑ+ are multiplicative with respect to both the strong
and disjunctive products, we must find counterexamples to both of the following inequalities:

ϑ′(G�H) ≤ ϑ′(G)ϑ′(H), ϑ+(G ∗H) ≥ ϑ+(G)ϑ+(H).

At the end of [Sch79], Schrijver gives an example of a graph, which we refer to as GS , that satisfies
ϑ′(GS) < ϑ(GS). The vertices of GS are the 0-1-strings of length six, and two strings are adjacent if
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their Hamming distance is at most three. In other words, Schrijver’s graph GS is an instance of a
Hamming graph. Note that this graph is vertex transitive. We will see how to use the graph GS to
construct counterexamples to both of the above inequalities. To do this we will need two lemmas,
the first of which is from [Lov79].

Lemma 4.18. For any graph G,
ϑ(G)ϑ(G) ≥ |V (G)|,

with equality when G is vertex transitive.

An analogous statement involving ϑ′ and ϑ+ was proved by Szegedy in [Sze94]:

Lemma 4.19. For any graph G,
ϑ′(G)ϑ+(G) ≥ |V (G)|,

with equality when G is vertex transitive.

One easy consequence of these lemmas is that if G is a vertex transitive graph such that
ϑ′(G) < ϑ(G), then

ϑ+(G) =
|V (G)|
ϑ′(G)

>
|V (G)|
ϑ(G)

= ϑ(G).

In particular this implies that ϑ+(GS) > ϑ(GS).
More pertinent to our discussion are the following lemmas.

Lemma 4.20. If G is a vertex transitive graph such that ϑ′(G) < ϑ(G), then

ϑ′(G�G) > ϑ′(G)ϑ′(G).

Proof. First note the vertices of the form (v, v) in G � G form an independent set of size |V (G)|.
Therefore, ϑ′(G�G) ≥ |V (G)|, and we have the following:

ϑ′(G)ϑ′(G) < ϑ(G)ϑ(G) = |V (G)| ≤ ϑ′(G�G),

since ϑ′(G) ≤ ϑ(G).

Since GS satisfies the hypotheses of lemma 4.20, we have the following desired corollary:

Corollary 4.21. The parameter ϑ′ is not multiplicative with respect to the strong product.

We are also able to use lemma 4.20 to prove a similar lemma for ϑ+.

Lemma 4.22. If G is a vertex transitive graph such that ϑ′(G) < ϑ(G), then

ϑ+(G ∗G) < ϑ+(G)ϑ+(G).

Proof. Suppose that G is such a graph. By lemma 4.20, we have that

ϑ′(G�G) > ϑ′(G)ϑ′(G).

Since G is vertex transitive, so is G ∗G and thus we can apply lemma 4.19 to obtain

ϑ+(G ∗G) =
|V (G)|2

ϑ′
(
G ∗G

) =
|V (G)|2
ϑ′(G�G)

<
|V (G)|
ϑ′(G)

|V (G)|
ϑ′(G)

= ϑ+(G)ϑ+(G).
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Similarly to the above, this implies the following:

Corollary 4.23. The parameter ϑ+ is not multiplicative with respect to the disjunctive product.

Even though ϑ′ is not multiplicative with respect to the strong product, nor is ϑ+ with respect
to the disjunctive product, one could ask whether they are at least multiplicative with respect to the
corresponding graph powers, as this would be enough to prove an analogue of corollary 4.9. It turns
out that they are not, as we now show. Non-multiplicativity for ϑ′ was shown already in [BFL10]
but with a much smaller gap.

Corollary 4.24. The parameter ϑ′ is not multiplicative under strong graph powers G�n, and ϑ+ is
not multiplicative under disjunctive graph powers G∗n.

Proof. Let GS be a vertex transitive graph such that ϑ′(GS) < ϑ(GS), whose existence was discussed
above. Let H = GS ⊕GS where ⊕ denotes disjoint union. Since ϑ′ is additive under disjoint union
and is super-multiplicative under the strong product,

ϑ′(H�2) = ϑ′[G�2
S ⊕ (GS �GS)⊕ (GS �GS)⊕GS

�2
]

= ϑ′(G�2
S ) + ϑ′(GS �GS)

+ ϑ′(GS �GS) + ϑ′(GS
�2

)

≥ ϑ′(GS)2 + ϑ′(GS �GS)

+ ϑ′(GS �GS) + ϑ′(GS)2

> ϑ′(GS)2 + ϑ′(GS)ϑ′(GS)

+ ϑ′(GS)ϑ′(GS) + ϑ′(GS)2

= [ϑ′(GS) + ϑ′(GS ]2

= ϑ′(H)2.

Similarly,

ϑ+(H∗2) = ϑ+[(GS ⊕GS) ∗ (GS ⊕GS)]

≤ ϑ+[G�2
S ⊕ (GS ∗GS)

⊕ (GS ∗GS)⊕GS
�2

] (4.24)

≤ ϑ+(GS)2 + ϑ+(GS ∗GS)

+ ϑ+(GS ∗GS) + ϑ+(GS)2

< ϑ+(GS)2 + ϑ+(GS)ϑ+(GS)

+ ϑ+(GS)ϑ+(GS) + ϑ+(GS)2

= [ϑ+(GS) + ϑ+(GS ]2

= ϑ+(H)2.

where (4.24) follows from the fact that ϑ+(G1) ≥ ϑ+(G2) when G1 is a subgraph of G2.

4.A.2 ϑ′ and the disjunctive product
Though ϑ′ is not multiplicative with respect to the strong product, we are able to show that it
is multiplicative with respect to the disjunctive product and the lexicographical product. The
lexicographical product G[H] has vertices V (G) × V (H) and edges (x, y) ∼ (x′, y′) if x ∼G x′ or
(x = x′ and y ∼H y′).
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Theorem 4.25. Schrijver’s number is multiplicative under the disjunctive and the lexicographical
products: ϑ′(G ∗H) = ϑ′(G[H]) = ϑ′(G)ϑ′(H).

Proof. We use the following formulation for Schrijver’s number:

ϑ′(G) = max{〈B, J〉 : B � 0,TrB = 1,

Bij ≥ 0 for all i, j,
Bij = 0 for i ∼ j}. (4.25)

It is easy to show that ϑ′(G∗H) ≥ ϑ′(G)ϑ′(H): if BG and BH are optimal solutions of (4.25) for ϑ′(G)
and ϑ′(H) then BG ⊗BH is feasible for (4.25) for ϑ′(G ∗H) with value ϑ′(G)ϑ′(H). Since G[H] is a
subgraph of G ∗H, we have ϑ′(G[H]) ≥ ϑ′(G ∗H). It remains only to show ϑ′(G[H]) ≤ ϑ′(G)ϑ′(H).

Let B be an optimal solution for (4.25) for ϑ′(G[H]). This can be considered as an operator
B ∈ L(C|V (G)|)⊗L(C|V (H)|), and we have 〈B, JG ⊗ JH〉 = ϑ′(G[H]) where JG is the all ones matrix
indexed by V (G) and similarly for JH . Note that Bxyx′y′ = 0 when x ∼G x′ or (x = x′ and y ∼H y′).
For x ∈ V (G) let |x〉 denote the corresponding basis vector in C|V (G)| and define

Bx = (〈x| ⊗ I)B(|x〉 ⊗ I) ∈ L(C|V (H)|).

Since Bx � 0, Bxyy′ ≥ 0 for all y, y′, and Bxyy′ = 0 when y ∼H y′, it holds that Bx/TrBx is feasible
for (4.25) for ϑ′(H). The value of this solution is 〈Bx, JH〉/TrBx, thus

〈Bx, JH〉
TrBx

≤ ϑ′(H).

Also,
∑
x TrB

x = TrB = 1, giving
∑

x

〈Bx, JH〉 ≤
∑

x

ϑ′(H)TrBx = ϑ′(H).

Define B′ = (I ⊗ 〈1|)B(I ⊗ |1〉) ∈ L(C|V (G)|) where |1〉 is the all ones vector. Note that B′ =
TrH{(I ⊗ JH)B}. Since B′ � 0, B′xx′ ≥ 0 for all x, x′, and B′xx′ = 0 when x ∼G x′, it holds
that B′/TrB′ is feasible for (4.25) for ϑ′(G). The value of this solution is 〈B′, JG〉/TrB′, thus
〈B′, JG〉/TrB′ ≤ ϑ′(G). Finally,

ϑ′(G[H]) = 〈B, JG ⊗ JH〉 = 〈B′, JG〉
≤ ϑ′(G)TrB′

= ϑ′(G)
∑

x

〈Bx, JH〉

≤ ϑ′(G)ϑ′(H).

4.A.3 What About ϑ+?
Based on other results concerning ϑ′ and ϑ+, theorem 4.25 seems to suggest that one should be
able to prove that ϑ+ is multiplicative with respect to the strong product. We already noted above
that one of the needed inequalities, namely ϑ+(G�H) ≤ ϑ+(G)ϑ+(H), does hold, so we would only
need to show that ϑ+(G �H) ≥ ϑ+(G)ϑ+(H) holds as well. For now, a proof of this fact eludes
us, but we are able to prove the multiplicativity of ϑ+ in the case of vertex transitive graphs using
lemma 4.19 and the multiplicativity of ϑ′ with respect to the disjunctive product.

Theorem 4.26. If G and H are vertex transitive, then

ϑ+(G�H) = ϑ+(G)ϑ+(H).
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Proof. Since G and H are vertex transitive, so is G�H. Therefore

ϑ+(G�H) =
|V (G)| · |V (H)|
ϑ′(G ∗H)

=
|V (G)| · |V (H)|
ϑ′(G)ϑ′(H)

= ϑ+(G)ϑ+(H).

This seems to be pretty strong evidence that ϑ+ is multiplicative with respect to the strong
product in general.

4.A.4 Projective Rank

The projective rank of a graph, ξf (G), is the infimum of d/r such that the vertices of a graph can
be assigned rank-r projectors in Cd such that adjacent vertices have orthogonal projectors. Such
an assignment is called a d/r-representation. The ‘f ’ subscript in the notation for projective rank
indicates that it can be thought of as a fractional version of orthogonal rank: the minimum dimension
of an assignment of vectors such that adjacent vertices receive orthogonal vectors. We will show ξf
to be multiplicative under both the disjunctive and the lexicographical products. As a reminder, the
lexicographical product G[H] has edges (x, y) ∼ (x′, y′) if x ∼G x′ or (x = x′ and y ∼H y′).

Theorem 4.27. Projective rank is multiplicative under the disjunctive and the lexicographical
products: ξf (G ∗H) = ξf (G[H]) = ξf (G)ξf (H).

Proof. A d1/r1-representation for G and a d2/r2-representation for H can be turned into a d1d2/r1r2-
representation for G ∗H by taking the tensor products of the projectors associated with each graph.
So ξf (G ∗H) ≤ ξf (G)ξf (H).

On the other hand, let Uxy for x ∈ V (G), y ∈ V (H) be the subspaces associated with a d/r-
representation of G[H]. For each x, the subspaces {Uxy : y} form an r′x/r projective representation of
H where r′x is the dimension of span{Uxy : y}, so it must hold that r′x/r ≥ ξf (H). Let r′ = min{r′x}
and for each x let Vx be an r′ dimensional subspace of span{Uxy : y}. These form a d/r′ representation
of G, so d/r′ ≥ ξf (G). Then, d/r = (d/r′)(r′/r) ≥ ξf (G)ξf (H) so ξf (G[H]) ≥ ξf (G)ξf (H). Since
G[H] ⊆ G ∗H we have ξf (G[H]) ≥ ξf (G)ξf (H) ≥ ξf (G ∗H) ≥ ξf (G[H]).

4.B An if-and-only-if for Schrijver’s number

Monotonicity of Schrijver’s number admits an if-and-only-if statement along the lines of theorem 4.6;
however, the corresponding conditions on the |wxs 〉 vectors are a bit more complicated and there is
seemingly no direct connection to entanglement assisted source-channel coding. Specifically, we have
the following result:

Theorem 4.28. ϑ̄′(G) ≤ ϑ̄′(H) if and only if there are vectors |w〉 6= 0 and |wxs 〉 ∈ Cd for each
x ∈ V (G), s ∈ V (H), for some d ∈ N, such that

1.
∑
s |wxs 〉 = |w〉

2. 〈wxs |wyt 〉 = 0 for s 6∼H t, s 6= t

3. 〈wxs |wys 〉 ≤ 0 for x ∼G y

4. 〈wxs |wxt 〉 = 0 for s 6= t

5. 〈wxs |wyt 〉 ≥ 0 for s 6= t.
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The proof is a straightforward modification of the proof for theorem 4.6. Before proceeding with
this, it is necessary to express ϑ̄′ in a form analogous to (4.14). This characterization appears without
proof in [Gal00]; we give the proof below. We do not know how to provide such a formulation for
ϑ̄+, so it may be possible that ϑ̄+ does not admit an if-and-only-if statement along the lines of
theorems 4.6 and 4.28.

Theorem 4.29.

ϑ̄′(G) = max{‖I + T‖ : I + T � 0,

Tij = 0 for i 6∼ j,
Tij ≥ 0 for all i, j}. (4.26)

Proof. The dual to the semidefinite program (4.16) is [Sch79]

ϑ̄′(G) = max{〈B, J〉 : B � 0,

TrB = 1,

Bij = 0 for i 6∼ j, i 6= j,

Bij ≥ 0 for all i, j}. (4.27)

Let T be the optimal solution for (4.26). We will show that this induces a feasible solution for (4.27)
via the recipe

B = |ψ〉 〈ψ| ◦ (I + T ),

where |ψ〉 is the eigenvector corresponding to the largest eigenvalue of I + T . This is positive
semidefinite (being the Schur–Hadamard product of two positive semidefinite matrices), and 〈B, J〉 =
〈ψ|I + T |ψ〉 = λ. Tii vanishes, so the diagonal of B is equal to the diagonal of |ψ〉 〈ψ|; consequently
TrB = 1. The matrix I + T has nonnegative entries so its eigenvector |ψ〉 can be chosen nonnegative,
leading to to Bij ≥ 0. So B is feasible for (4.27) and (4.27) ≥ (4.26).

Conversely, suppose that B is feasible for (4.27) with value λ. Let D be the diagonal component
of B. Let D−1/2 be the diagonal matrix having entries Dii = 1/

√
Bii with the convention 1/0 = 0

(note that D−1/2 is the Moore–Penrose pseudoinverse of D1/2). Define

T = D−1/2(B −D)D−1/2.

When i 6∼ j, this matrix satisfies Tij = 0. Since D and B −D have nonnegative entries, T does as
well. We have

I + T � D−1/2DD−1/2 + T

= D−1/2BD−1/2 (4.28)
� 0.

So T is feasible for (4.26). Let |ψ〉 be the vector with coefficients ψi =
√
Bii. Since TrB = 1, this is

a unit vector. Making use of (4.28),

〈ψ|I + T |ψ〉 ≥
〈
ψ
∣∣∣D−1/2BD−1/2

∣∣∣ψ
〉

=
∑

ij s.t.
BiiBjj 6=0

Bij

=
∑

ij

Bij (4.29)

= 〈J,B〉 = λ.
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Equality (4.29) holds because B is positive semidefinite and so satisfies Bij = 0 when BiiBjj = 0.
Since T is feasible for (4.26),

(4.26) ≥ ‖I + T‖ ≥ λ = (4.27).

Proof of theorem 4.28. As in the proof of theorem 4.6, we work with the Gram matrix of the |wxs 〉
vectors. The existence of vectors satisfying the conditions in the theorem statement is easily seen to
be equivalent to the existence of a matrix C : L(C|V (G)|)⊗ L(C|V (H)|) satisfying

C � 0
∑

st

Cxyst = 1

Cxyst = 0 for s 6∼ t, s 6= t

Cxyss ≤ 0 for x ∼ y
Cxxst = 0 for s 6= t

Cxyst ≥ 0 for s 6= t

Using this characterization, we proceed with the proof.
(=⇒): Suppose ϑ̄′(G) ≤ ϑ̄′(H). We will explicitly construct a matrix C having the above

properties. Let λ = ϑ̄′(H). By theorem 4.29 there is a matrix T such that ‖I + T‖ = λ, I + T � 0,
Tst = 0 for s 6∼ t, and Tst ≥ 0 for all s, t. Let |ψ〉 be the vector corresponding to the largest eigenvalue
of I + T , which can be chosen nonnegative since T is entrywise nonnegative. With ◦ denoting the
Schur–Hadamard product, define the matrices

D = |ψ〉 〈ψ| ◦ I,
B = |ψ〉 〈ψ| ◦ (I + T ).

These are entrywise nonnegative. With J being the all-ones matrix and 〈·, ·〉 denoting the Hilbert–
Schmidt inner product, it is readily verified that

〈D,J〉 = 〈ψ|ψ〉 = 1,

〈B, J〉 = 〈ψ|I + T |ψ〉 = λ.

Schur–Hadamard products between positive semidefinite matrices yield positive semidefinite matrices.
As a consequence, B � 0 and

‖I + T‖ = λ =⇒ λI − (I + T ) � 0 =⇒ λD −B � 0.

Since λ ≥ ϑ̄′(G), there is a matrix Z such that Z � 0, Zxx = λ− 1 for all x, and Zxy ≤ −1 for
all x ∼ y. Note that (4.16) gives existence of a matrix with ϑ̄′(G) − 1 on the diagonal, but since
λ ≥ ϑ̄′(G) we can add a multiple of the identity to get λ− 1 on the diagonal.

We now construct C. Define

C = λ−1
[
J ⊗B + (λ− 1)−1Z ⊗ (λD −B)

]
.

Since J , B, Z, and λD −B are all positive semidefinite, and λ− 1 ≥ 0, we have that C is positive
semidefinite. The other desired conditions on C are easy to verify. For all x, y we have

∑

st

Cxyst = λ−1
[
〈B, J〉+ (λ− 1)−1Zxy[λ〈D,J〉 − 〈B, J〉]

]

= 1.
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For s 6∼ t, s 6= t, we have that Bst = Dst = 0 so Cxyst = 0. For x ∼ y,

Cxyss = λ−1
[
Bss + (λ− 1)−1Zxy(λDss −Bss)

]

= λ−1
[
Dss + (λ− 1)−1Zxy(λDss −Dss)

]

= λ−1Dss [1 + Zxy]

≤ 0.

For all x and for s 6= t,

Cxxst = λ−1
[
Bst + (λ− 1)−1Zxx(λDst −Bst)

]

= λ−1Bst
[
1− (λ− 1)−1Zxx

]

= 0.

For all x, y and for s 6= t,

Cxyst = λ−1
[
Bst + (λ− 1)−1Zxy(λDst −Bst)

]

= λ−1Bst
[
1− (λ− 1)−1Zxy

]

≥ 0,

where the last inequality follows from the fact that Z � 0 =⇒ |Zxy| ≤ max{Zxx, Zyy} = λ− 1.
(⇐=): Let Z achieve the optimal value (call it λ) for the minimization program (4.16) for ϑ̄′(H).

We will provide a feasible solution for (4.16) for ϑ̄′(G) to show that ϑ̄′(G) ≤ ϑ̄′(H). Specifically, let

Y =
(
I ⊗ 〈1|

)[(
J ⊗ Z

)
◦ C
](
I ⊗ |1〉

)
,

as in the proof of theorem 4.6. Since C � 0 and Z � 0, and positive semidefiniteness is preserved by
conjugation, we have that Y � 0. Considering the entries of Y we see that Yxy =

∑
st ZstCxyst.

Using the fact that Zss = λ− 1 and Cxxst = 0 for s 6= t, we have

Yxx =
∑

st

ZstCxxst = (λ− 1)
∑

st

Cxxst = λ− 1.

For x ∼ y we have

Yxy =
∑

st

ZstCxyst

=
∑

s∼t
Zst︸︷︷︸
≤−1

Cxyst︸ ︷︷ ︸
≥0

+
∑

s6∼t,s6=t
Zst Cxyst︸ ︷︷ ︸

=0

+
∑

s

Zss︸︷︷︸
≥−1

Cxyss︸ ︷︷ ︸
≤0

≤
∑

s∼t
(−1)Cxyst +

∑

s6∼t,s6=t
(−1)Cxyst +

∑

s

(−1)Cxyss

=
∑

st

(−1)Cxyst = −1.

Now define a matrix Y ′ consisting of the real part of Y (i.e. with coefficients Y ′xy = Re[Yxy]). This
matrix is real, positive semidefinite, and satisfies Yxx = λ − 1 for all x and Yxy ≤ −1 for x ∼ y.
Therefore Y ′ is feasible for (4.16) with value λ = ϑ̄′(H). Since ϑ̄′(G) is the minimum possible value
of (4.16), we have ϑ̄′(G) ≤ ϑ̄′(H).

By setting G = Kn or H = Kn it is possible to formulate corollaries analogous to corollaries 4.7
and 4.8. We describe only the first of these here.
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Corollary 4.30. Let β−(H) be the largest n such that there are vectors |w〉 6= 0 and |wxs 〉 ∈ Cd for
each x ∈ {1, . . . , n}, s ∈ V (H), for some d ∈ N, such that

1.
∑
s |wxs 〉 = |w〉

2. 〈wxs |wyt 〉 = 0 for s ∼H t

3. 〈wxs |wys 〉 ≤ 0 for x 6= y

4. 〈wxs |wxt 〉 = 0 for s 6= t

5. 〈wxs |wyt 〉 ≥ 0 for s 6= t.

Then β−(H) = bϑ′(H)c.
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Chapter 5

Quantum source-channel coding and
non-commutative graph theory1

1 Preprint available: Dan Stahlke, Quantum source-channel coding and non-commutative graph theory,
arXiv:1405.5254 [quant-ph] (2014).
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5.1 Abstract
Alice and Bob receive a bipartite state (possibly entangled) from some finite collection or from
some subspace. Alice sends a message to Bob through a noisy quantum channel such that Bob
may determine the initial state, with zero chance of error. This framework encompasses, for
example, teleportation, dense coding, entanglement assisted quantum channel capacity, and one-way
communication complexity of function evaluation.

With classical sources and channels, this problem can be analyzed using graph homomorphisms.
We show this quantum version can be analyzed using homomorphisms on non-commutative graphs
(an operator space generalization of graphs). Previously the Lovász ϑ number has been generalized to
non-commutative graphs; we show this to be a homomorphism monotone, thus providing bounds on
quantum source-channel coding. We generalize the Schrijver and Szegedy numbers, and show these
to be monotones as well. As an application we construct a quantum channel whose entanglement
assisted zero-error one-shot capacity can only be unlocked by using a non-maximally entangled state.

These homomorphisms allow definition of a chromatic number for non-commutative graphs. Many
open questions are presented regarding the possibility of a more fully developed theory.

5.2 Introduction
We investigate a quantum version of zero-error source-channel coding (communication over a noisy
channel with side information). This includes such problems as zero-error quantum channel capac-
ity (with or without entanglement assistance) [DSW13,Dua09,FS13,BS08], dense coding [BW92],
teleportation [BBC+93], function evaluation using one-way (classical or quantum) communica-
tion [Wit76,dW01], and measurement of bipartite states using local operations and one-way commu-
nication (LOCC-1) [Nat13]. Unless otherwise mentioned all discussion is in the context of zero-error
information theory—absolutely no error is allowed.

The problem we consider is as follows. Alice and Bob each receive half of a bipartite state |ψi〉
from some finite collection that has been agreed to in advance (the source). Alice sends a message
through a noisy quantum channel, and Bob must determine i using Alice’s noisy message and his half
of the input |ψi〉. The goal is to determine whether such a protocol is possible for a given collection
of input states and a given noisy channel. One may also ask how many channel uses are needed per
input state if several different input states arrive in parallel. This is known as the cost rate. We also
consider a variation in which the discrete index i is replaced by a quantum register.

For classical inputs and a classical channel, source-channel coding is possible if and only if there is
a graph homomorphism between two suitably defined graphs. Since the Lovász ϑ number of a graph
is a homomorphism monotone, it provides a lower bound on the cost rate [NTR06]. This bound also
applies if Alice and Bob can make use of an entanglement resource [CMR+13,BBL+13]. We extend
the notion of graph homomorphism to non-commutative graphs and show the generalized Lovász ϑ
number of [DSW13] to be monotone under these homomorphisms, providing a lower bound on cost
rate for quantum source-channel coding.

Schrijver’s ϑ′ and Szegedy’s ϑ+, which are variations on Lovász’s ϑ, are also homomorphism
monotones. We generalize these for non-commutative graphs, providing stronger bounds on one-
shot quantum channel capacity in particular and on quantum source-channel coding in general.
Although ϑ′ and ϑ+ provide only mildly stronger bounds as compared to ϑ for classical graphs,
with non-commutative graphs the differences are often dramatic. For classical graphs ϑ′ and ϑ+ are
monotone under entanglement assisted homomorphisms [CMR+13], but oddly this is not the case
for non-commutative graphs. As a consequence, these quantities can be used to study the power of
entanglement assistance. We construct a channel with large one-shot entanglement assisted capacity
but no one-shot capacity when assisted by a maximally entangled state.

In section 5.3 we review graph theory and (slightly generalized) classical source-channel coding.
In section 5.4 we review the theory of non-commutative graphs and define a homomorphism for
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these graphs. In section 5.5 we build the theory of quantum source-channel coding and provide
a few basic examples. In section 5.6 we prove that ϑ is monotone under entanglement assisted
homomorphisms of non-commutative graphs. In section 5.7 we consider parallel repetition and define
various products on non-commutative graphs. In section 5.8 we define Schrijver ϑ′ and Szegedy ϑ+

numbers for non-commutative graphs; we then revisit some examples from the literature and also show
that one-shot entanglement assisted capacity for a quantum channel can require a non-maximally
entangled state. We conclude with a list of many open questions in section 5.9.

5.3 Classical source-channel coding
We will make use of the following graph theory terminology. A graph G consists of a finite set of
vertices V (G) along with a symmetric binary relation x ∼G y (the edges of G). The absence of
an edge is denoted x 6∼G y. The subscript will be omitted when the graph can be inferred from
context. We allow loops on vertices. That is to say, we allow x ∼ x for some of the x ∈ V (G).
Typically we will be dealing with graphs that do not have loops (simple graphs), but allow the
possibility due to the utility and insight that loops will afford. We will note the subtleties that
this causes, as they arise. We denote by G the complement of G, having vertices V (G) and edges
x ∼G y ⇐⇒ x 6∼G y, x 6= y. For graphs with loops it is also common to use as the complement the
graph with edges x ∼G y ⇐⇒ x 6∼G y. Fortunately, we will only consider the complement of loop
graphs that have loops on all vertices, and in this case the two definitions coincide. A clique is a set
of vertices C ⊆ V (G) such that x ∼ y for all x, y ∈ C, x 6= y. An independent set is a clique of G,
equivalently a set C ⊆ V (G) such that x 6∼ y for all x, y ∈ C, x 6= y. The clique number ω(G) is the
size of the largest clique, and the independence number α(G) is the size of the largest independent
set. A proper coloring of G is a map f : G → {1, · · · , n} (an assignment of colors to the vertices
of G) such that f(x) 6= f(y) whenever x ∼ y (note that this is only possible for graphs with no
loops). The chromatic number χ(G) is the smallest possible number of colors needed. If no proper
coloring exists (i.e. if G has loops) then χ(G) =∞. The complete graph Kn has vertices {1, · · · , n}
and edges x ∼ y ⇐⇒ x 6= y (note in particular that Kn does not have loops). G is a subgraph of H
if V (G) ⊆ V (H) and x ∼G y =⇒ x ∼H y.

Suppose Alice wishes to send a message to Bob through a noisy classical channel N : S → V such
that Bob can decode Alice’s message with zero chance of error. How big of a message can be sent?
Denote by N (v|s) the probability that sending s ∈ S through N will result in Bob receiving v ∈ V ,
and define the graph H with vertex set S and with edges

s ∼H t ⇐⇒ N (v|s)N (v|t) = 0 for all v ∈ V. (5.1)

Two codewords s and t can be distinguished with certainty by Bob if they are never mapped to the
same v. Therefore, the largest set of distinguishable codewords corresponds to the largest clique in H,
and the number of such codewords is the clique number ω(H). We will call H the distinguishability
graph of the channel N . It is traditional to instead deal with the confusability graph, of which (5.1)
is the complement. We choose to break with this tradition as this will lead to cleaner notation. Also
the distinguishability graph has the advantage of not having loops, making it more natural from
a graph-theoretic perspective. In order to facilitate comparison to prior results we will sometimes
speak of α(H) rather than ω(H) (note that these are equal).

If Bob already has some side information regarding the message Alice wishes to send, the
communication task becomes easier: the number of codewords is no longer limited to ω(H). This
situation is known as source-channel coding. We will use a slightly generalized version of source-
channel coding, as this will aid in the quantum generalization in section 5.5. Suppose Charlie chooses
a value i and sends a value x to Alice and u to Bob with probability P (x, u|i). Alice sends Bob a
message through a noisy channel. Bob uses Alice’s noisy message, along with his side information u,
to deduce Charlie’s input i (fig. 5.1). This reduces to standard source-channel coding if P (x, u|i) 6= 0
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only when x = i. In other words, the standard scenario has no Charlie, x and u come in with
probability P (x, u), and Bob is supposed to produce x.

Alice’s lab

Bob’s lab

Charlie’s lab

i P (x, u|i)

Encode:
s = f(x)

N (v|s)

Decode i

x

u

s

v

Figure 5.1: Zero-error source-channel coding.

There are a number of reasons one might wish to consider such a scenario. For instance, suppose
that x = i always. The side information u might have originated from a previous noisy transmission of
x from Alice to Bob. The goal is to resend using channel N in order to fill in the missing information.
Or, the communication complexity of bipartite function evaluation fits into this model. Suppose that
Alice and Bob receive x and u, respectively, from a referee Charlie. Alice must send a message to Bob
such that Bob may evaluate some function g(x, u). To fit this into the model of fig. 5.1, imagine that
Charlie first chooses a value i for g, then sends Alice and Bob some x, u pair such that g(x, u) = i.
From the perspective of Alice and Bob, determining i is equivalent to evaluating g(x, u). One may
ask how many bits Alice needs to send to Bob to accomplish this.

In general, Alice’s strategy is to encode her input x using some function f : X → S before sending
it through the channel (a randomized strategy never helps when zero-error is required). As before,
Bob receives a value v with probability N (v|s). The values u and v must be sufficient for Bob to
compute i. For a given u, Bob knows Alice’s input comes from the set {x : ∃i such that P (x, u|i) 6= 0}.
Bob only needs to distinguish between the values of x corresponding to different i, since his goal is
to determine i. Define a graph G with vertices V (G) = X and with edges between Alice inputs that
Bob sometimes needs to distinguish:

x ∼G y ⇐⇒ ∃u,∃i 6= j such that P (x, u|i)P (y, u|j) 6= 0. (5.2)

This is the characteristic graph of the source P . If Bob must sometimes distinguish x from y then
Alice’s encoding must ensure that x and y never get mapped to the same output by the noisy channel.
In other words, her encoding must satisfy f(x) ∼H f(y) whenever x ∼G y. By definition, this is
possible precisely when G is homomorphic to H.

Definition 5.1. Let G and H be graphs without loops. G is homomorphic to H, written G→ H, if
there is a function f : V (G)→ V (H) such that x ∼ y =⇒ f(x) ∼ f(y). The function f is said to
be a homomorphism from G to H.

Graph homomorphisms are examined in great detail in [HT97,HN04]. We state here some basic
facts that can be immediately verified.

Proposition 5.2. Let F,G,H be graphs without loops.

1. If F → G and G→ H then F → H.

2. If G is a subgraph of H then G→ H.

3. The clique number ω(H) is the largest n such that Kn → H.
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4. The chromatic number χ(G) is the smallest n such that G→ Kn.

The above arguments can be summarized as follows.

Proposition 5.3. There exists a zero-error source-channel coding protocol for source P (x, u|i) and
channel N (v|s) if and only if G→ H where G is the characteristic graph of the source, (5.2), and H
is the distinguishability graph of the channel, (5.1).

As required by definition 5.1, neither G nor H have loops. More precisely, G has a loop if and
only if there is an x, u that can occur for two different inputs by Charlie. In this case it is impossible
for Alice and Bob to recover Charlie’s input, no matter how much communication is allowed.

We emphasize that, although we refer to source-channel coding and use the associated terminology,
we are actually considering something a bit more general since we use a source P (x, u|i), with Bob
answering i, rather than a source P (x, u), with Bob answering x. Standard source-channel coding,
which can be recovered by setting P (x, u|i) 6= 0 ⇐⇒ x = i, was characterized in terms of graph
homomorphisms in [NTR06]. Our generalization does not substantially change the theory,2 and will
allow a smoother transition to the quantum version (in the next section).

The Lovász number of the complementary graph, ϑ̄(G) = ϑ(G), is given by the following dual
(and equivalent) semidefinite programs: [Lov79,Lov03]3

ϑ̄(G) = max{‖I + T‖ : I + T � 0,

Tij = 0 for i 6∼ j}, (5.3)
ϑ̄(G) = min{λ : ∃Z � J, Zii = λ,

Zij = 0 for i ∼ j}, (5.4)

where we assume that G has no loops. The norm here is the operator norm (equal to the largest
singular value), J is the matrix with every entry equal to 1, and Z � J means that Z − J is positive
semidefinite. This quantity is a homomorphism monotone in the sense that [dCST13]

G→ H =⇒ ϑ̄(G) ≤ ϑ̄(H). (5.5)

Consequently (see proposition 5.2) we have the Lovász sandwich theorem

ω(G) ≤ ϑ̄(G) ≤ χ(G). (5.6)

Since source-channel coding is only possible when G→ H, it follows that ϑ̄(G) ≤ ϑ̄(H) is a necessary
condition. Two related quantities, Schrijver’s ϑ̄′ and Szegedy’s ϑ̄+, which will be defined in section 5.8,
have similar monotonicity properties [dCST13] so they provide similar bounds.

Proposition 5.4. One-shot source-channel coding is possible only if ϑ̄(G) ≤ ϑ̄(H), ϑ̄′(G) ≤ ϑ̄′(H),
and ϑ̄+(G) ≤ ϑ̄+(H), where G is the characteristic graph of the source, (5.2), and H is the distin-
guishability graph of the channel, (5.1).

Traditionally, source-channel coding has been studied in the case where P (x, u|i) 6= 0 only when
x = i. In this case, the following bound holds [NTR06]:4

2 Although, for our generalization extra care needs to be taken when considering parallel repetitions. This will be
discussed in section 5.7.

3 The first of these follows from theorem 6 of [Lov79] by setting T = A/ |λn(A)| (note that in [Lov79] vertices are
considered adjacent to themselves). The second comes from page 167 of [Lov03], or from theorem 3 of [Lov79] by
taking Z = λI −A+ J with λ being the maximum eigenvalue of A.

4 Actually, [NTR06] seems to have stopped just short of stating such a bound, although they lay all the necessary
foundation.
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Proposition 5.5. Suppose P (x, u|i) 6= 0 only when x = i and let graphs G and H be given by (5.2)
and (5.1). Then m parallel instances of the source can be sent using n parallel instances of the
channel only if

n

m
≥ log ϑ̄(G)

log ϑ̄(H)
.

We will always take logarithms to be base 2. The infimum of n/m (equivalent to the limit as
m → ∞) is known as the cost rate; proposition 5.5 can be interpreted as an upper bound on the
cost rate. This bound relies on the fact that ϑ̄ is multiplicative under various graph products, a
property not shared by ϑ̄′ or ϑ̄+. Propositions 5.4 and 5.5 apply also to the case of entanglement
assisted source-channel coding, still with classical inputs and a classical channel [CMR+13]. We will
later show (proposition 5.21) that the condition P (x, u|i) 6= 0 only when x = i is not necessary in
proposition 5.5.

With some interesting caveats, these two theorems in fact also apply to a generalization of
source-channel coding in which the source produces bipartite entangled states and in which the
channel is quantum. The rest of this paper is devoted to development of this theory.

5.4 Non-commutative graph theory
Given a graph G on vertices V (G) = {1, . . . , n} we may define the operator space

S = span{|x〉 〈y| : x ∼ y} ⊆ L(Cn) (5.7)

where |x〉 and |y〉 are basis vectors from the standard basis. Because we consider symmetric rather
than directed graphs, this space is Hermitian: A ∈ S ⇐⇒ A† ∈ S (more succinctly, S = S†). If G
has no loops, S is trace-free (it consists only of trace-free operators). If G has loops on all vertices, S
contains the identity.

Concepts from graph theory can be rephrased in terms of such operator spaces. For example, for
trace-free spaces the clique number can be defined as the size of the largest set of nonzero vectors
{|ψi〉} such that |ψi〉 〈ψj | ∈ S for all i 6= j. Note that since S is trace-free, these vectors must be
orthogonal. Although not immediately obvious, this is indeed equivalent to ω(G) when S is defined
as in (5.7).

Having defined clique number in terms of operator spaces, one can drop the requirement that S
be of the form (5.7) and can speak of the clique number of an arbitrary Hermitian subspace. Such
subspaces, thought of in this way, are called non-commutative graphs [DSW13]. Note that [DSW13]
requires S to contain the identity, but we drop this requirement and insist only that S = S†. Such
a generalization is analogous to allowing the vertices of a graph to not have loops. Dropping also
the condition S = S† would give structures analogous to directed graphs, however we will not have
occasion to consider this.

To draw clear distinction between non-commutative graphs and the traditional kind, we will often
refer to the latter as classical graphs. We will say S derives from a classical graph if S is of the
form (5.7).

The distinguishability graph of a quantum channel N : L(A)→ L(B) with Kraus operators {Ni}
can be defined as

T = (span{N†i Nj : ∀i, j})⊥ ⊆ L(A) (5.8)

where ⊥ denotes the perpendicular subspace under the Hilbert–Schmidt inner product 〈X,Y 〉 =

Tr(X†Y ). For a classical channel this is equal to (5.7) with G given by (5.1). The space span{N†i Nj}
(the confusability graph) was considered in [BS08, Dua09, FS13, DSW13]; however, we consider
the perpendicular space for the same reason that we considered the distinguishability rather than
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the confusability graph in section 5.3: it leads to simpler notation especially when discussing
homomorphisms. It will be convenient to use the notation

N := span{Ni},

and likewise for other sets of Kraus operators so that (5.8) becomes simply

T = (N†N)⊥, (5.9)

with the multiplication of two operator spaces defined to be the linear span of the products of
operators from the two spaces. Note that the closure condition for Kraus operators gives

∑
iN
†
i Ni =

I =⇒ I ∈ N†N =⇒ I ⊥ T . Therefore T is trace-free.
In [DSW13] a generalization of the Lovász ϑ(G) number was provided for non-commutative

graphs, which they called θ̃(S). We present the definition in terms of ϑ(S) := ϑ̃(S⊥), which should
be thought of as a generalization of ϑ̄(G) = ϑ(G).

Definition 5.6 ( [DSW13]). Let S ⊆ L(A) be a trace-free non-commutative graph. Let A′ be an
ancillary system of the same dimension as A, and define the vector |Φ〉 =

∑
i |i〉A ⊗ |i〉A′ . Then ϑ(S)

is defined by the following dual (and equivalent) programs:

ϑ(S) = max{‖I +X‖ : X ∈ S ⊗ L(A′), I +X � 0}, (5.10)

ϑ(S) = min{‖TrAY ‖ : Y ∈ S⊥ ⊗ L(A′), Y � |Φ〉 〈Φ|}. (5.11)

We will use the notation ϑ̃(S⊥) = ϑ(S).

When S derives from loop-free graph G via (5.7), this reduces to the standard Lovász number:
ϑ(S) = ϑ̄(G). Similarly, when S derives from a graph G having loops on all vertices, ϑ̃(S) =
ϑ(G). Analogous to the classical case, ϑ(S) gives an upper bound on the zero-error capacity of a
quantum channel. In fact, it even gives an upper bound on the zero-error entanglement assisted
capacity [DSW13].

Independence number for non-commutative graphs has been investigated in [BS08,Dua09,FS13,
DSW13], and in [DSW13] the authors posed the question of whether further concepts from graph
theory can be generalized as well. We carry out this program by generalizing graph homomorphisms,
which will in turn lead to a chromatic number for non-commutative graphs. These generalized graph
homomorphisms will characterize quantum source-channel coding in analogy to proposition 5.3. In
fact, one could define non-commutative graph homomorphisms as being the relation that gives a
generalization of proposition 5.3, but we choose instead to provide more direct justification for our
definition.

We begin by describing ordinary graph homomorphisms in terms of operator spaces of the
form (5.7); this will lead to a natural generalization to non-commutative graphs. Suppose that
S ⊆ L(A) and T ⊆ L(B) are derived from graphs G and H via (5.7), and consider a function
f : V (G)→ V (H). In terms of S and T , the homomorphism condition x ∼G y =⇒ f(x) ∼H f(y)
becomes

|x〉 〈y| ∈ S =⇒ |f(x)〉 〈f(y)| ∈ T, (5.12)

where |x〉 and |y〉 are vectors from the standard basis. Consider the classical channel that maps
x→ f(x). Viewed as a quantum channel, this can be written as the superoperator E : L(A)→ L(B)
with the action E(|x〉 〈x|) = |f(x)〉 〈f(x)|. The Kraus operators of this channel are Ex = |f(x)〉 〈x|.
Again using the notation E = span{Ei}, (5.12) can be written ESE† ⊆ T . The generalization to
non-commutative graphs is obtained by dropping the condition that E be a classical channel, allowing
instead arbitrary completely positive trace preserving (CPTP) maps.
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Definition 5.7. Let S ⊆ L(A) and T ⊆ L(B) be trace-free non-commutative graphs. We write
S → T if there exists a completely positive trace preserving (CPTP) map E : L(A) → L(B) with
Kraus operators {Ei} such that

ESE† ⊆ T or, equivalently, (5.13)

E†T⊥E ⊆ S⊥. (5.14)

Equivalently, S → T if and only if there is a Hilbert space C and an isometry J : A→ B ⊗ C such
that

JSJ† ⊆ T ⊗ L(C) or, equivalently, (5.15)

J†(T⊥ ⊗ L(C))J ⊆ S⊥. (5.16)

We will say that the subspace E, or the Kraus operators {Ei}, or the isometry J , is a homomorphism
from S to T .

That (5.13)-(5.16) are equivalent can be seen as follows. (5.13) ⇐⇒ (Tr{ese′†t′} = 0 ∀e, e′ ∈
E, s ∈ S, t′ ∈ T⊥) ⇐⇒ (5.14). Similar reasoning shows (5.15) ⇐⇒ (5.16), using (T ⊗ L(C))⊥ =
T⊥ ⊗ L(C). Equivalence of (5.14) and (5.16) follows from the fact that E = span|φ〉{(I ⊗ 〈φ|)J}
where J is related to E by Stinespring’s dilation theorem.

When S and T derive from classical graphs definition 5.7 is equivalent to definition 5.1, as we
will now show.

Theorem 5.8. For non-commutative graphs that derive from classical graphs, definitions 5.1 and 5.7
coincide. In other words, if S and T derive from graphs G and H according to the recipe (5.7) then
G→ H ⇐⇒ S → T .

Proof. Let S and T be non-commutative graphs deriving from classical graphs G and H.
( =⇒ ) Suppose G→ H. By definition 5.1 there is an f : G→ H such that x ∼G y =⇒ f(x) ∼H

f(y). Consider the set of Kraus operators Ex = |f(x)〉 〈x|. Then,

ESE† = span{Ei |x〉 〈y|E†j : i, j, x ∼G y}
= span{|f(x)〉 〈f(y)| : x ∼G y}
⊆ T.

( ⇐= ) Suppose S → T . By definition 5.7 there is a channel E : L(A) → L(B) such that
ESE† ⊆ T . For each vertex x of G, there is an i(x) such that Ei(x) |x〉 does not vanish. Pick an
arbitrary nonvanishing index of the vector Ei(x) |x〉 and call this f(x) so that 〈f(x)|Ei(x) |x〉 6= 0.

Now consider any edge x ∼G y. We have

|x〉 〈y| ∈ S =⇒ E |x〉 〈y|E† ∈ T
=⇒ Ei(x) |x〉 〈y|E†i(y) ∈ T.

Define τ := Ei(x) |x〉 〈y|E†i(y). Then τ ∈ T and

〈f(x)|τ |f(y)〉 6= 0 =⇒ Tr{τ |f(y)〉 〈f(x)|} 6= 0

=⇒ |f(x)〉 〈f(y)| 6∈ T⊥
=⇒ |f(x)〉 〈f(y)| ∈ T
=⇒ f(x) ∼H f(y).

Therefore x ∼G y =⇒ f(x) ∼H f(y).
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Definition 5.7 could be loosened to require only that
∑
iE
†
iEi be invertible (equivalently E |ψ〉 6=

{0} for all |ψ〉, equivalently J†J invertible) rather than E being trace preserving. Theorem 5.8 would
still hold; however, definition 5.7 as currently stated has an operational interpretation in terms of
quantum source-channel coding (which we will introduce in section 5.5) and satisfies the monotonicity
relation S → T =⇒ ϑ(S) ≤ ϑ(T ) (which we will show in section 5.6). Hilbert space structure
seems to be important for non-commutative graphs, so it is reasonable to require that J preserve
this structure (i.e. J should be an isometry).

As a guide to the intuition, one should not think of ESE† in (5.13) as density operators ρ ∈ S
going into a channel, like

∑
iEiρE

†
i , but rather as a mechanism for comparing the action of the

channel on two different states, something like {Ei |ψ〉 〈φ|E†j : ∀i, j} with |ψ〉 〈φ| ∈ S. But this is
only a rough intuition, as S might not necessary be composed of dyads |ψ〉 〈φ|. The two copies of E
here are analogous to the two Kraus operators appearing in the Knill–Laflamme condition, which we
will explore in section 5.5. Note that E |ψ〉 is equal to the support of E(|ψ〉 〈ψ|).

The non-commutative graph homomorphism of definition 5.7 satisfies properties analogous to
those of proposition 5.2.

Proposition 5.9. Let R,S, T be trace-free non-commutative graphs.

1. If R→ S and S → T then R→ T .

2. If S ⊆ T then S → T . More generally, if J is an isometry and JSJ† ⊆ T then S → T .

Proof. Item 1 follows from considering the composition of channels associated with the homomor-
phisms R → S and S → T . Item 2 follows trivially from (5.15), taking space C to be trivial (one
dimensional).

(The condition that appears above, JSJ† ⊆ T with J an isometry, seems to be a reasonable
generalization of the notion of subgraphs for non-commutative graphs, although we won’t be making
use of this concept. Note that [DSW13] defined induced subgraphs as J†SJ . It appears that these
two definitions are somewhat incompatible.)

For classical graphs the clique number is the greatest n such that Kn → G and the chromatic
number is the least n such that G→ Kn. We use this to extend these concepts to non-commutative
graphs. In the previous section, the complete graph Kn was defined to have no loops. The
corresponding non-commutative graph, defined via (5.7), is span{|x〉 〈y| : x 6= y}, the space of
matrices with zeros on the diagonal. However, it is reasonable to also consider (CI)⊥, the space of
trace-free operators. We consider both.

Definition 5.10. For n ≥ 1 define the classical and quantum complete graphs

Kn = span{|x〉 〈y| : x 6= y} ⊆ L(Cn),

Qn = (CI)⊥ ⊆ L(Cn).

One can think of Kn as consisting of the operators orthogonal to the “classical loops” |x〉 〈x| and
Qn as consisting of the operators orthogonal to the “coherent loop” I. We use these to define clique,
independence, and chromatic numbers for non-commutative graphs. In section 5.5 we will see that
all of these quantities have operational interpretations in the context of communication problems.
These quantities, and others, are summarized in table 5.1.

Definition 5.11. Let S be a trace-free non-commutative graph. We define the following quantities.

1. ω(S) is the greatest n such that Kn → S

2. ωq(S) is the greatest n such that Qn → S

3. α(S⊥) = ω(S) and αq(S⊥) = ωq(S). Note that I ∈ S⊥.
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4. χ(S) is the least n such that S → Kn, or ∞ if S 6→ Kn for all n

5. χq(S) is the least n such that S → Qn

The quantities ωq and χq are not to be confused with the quantities of similar name that are discussed
in the context of Bell-like nonlocal games [AHKS06,CMN+07,RM12].

When S derives from a classical graph G, our ω and χ correspond to the ordinary definitions of
clique number and chromatic number and our χq corresponds to the orthogonal rank ξ(G).5 This
will be proved shortly. For non-commutative graphs with I ∈ S, our definition of α(S) and αq(S)
corresponds to that of [DSW13,Dua09,FS13,BS08], as we will show in theorem 5.13. In other words,
when S = N†N is the confusability graph of a channel N , α(S) and αq(S) correspond to the one-shot
classical and quantum capacities; when S = (N†N)⊥ the same can be said for ω(S) and ωq(S).

Theorem 5.12. Let S be the non-commutative graph associated with a classical loop-free graph G.
Then ω(S) = ω(G), χ(S) = χ(G), χq(S) = ξ(G), and ωq(S) = 1.

Proof. ω(S) = ω(G) and χ(S) = χ(G) follow directly from definition 5.11 and proposition 5.2
and theorem 5.8.

An orthogonal representation of G is a map from vertices to nonzero vectors such that adjacent
vertices correspond to orthogonal vectors. The orthogonal rank ξ(G) is defined to be the smallest
possible dimension of an orthogonal representation. Let {|ψx〉}x∈V (G) ⊆ L(Cn) be an orthogonal
representation of G. Without loss of generality assume these vectors to be normalized. The Kraus
operators Ex = |ψx〉 〈i| provide a homomorphism S → Qn. So χq(S) ≤ ξ(G).

Conversely, suppose a set of Kraus operators {Ei} provides a homomorphism S → Qn with
n = χq(S). Because

∑
iE
†
iEi = I, for each x ∈ G there is an i(x) such that Ei(x) |x〉 does not vanish.

Define |ψx〉 = Ei(x) |x〉. For any edge x ∼ y of G we have

|x〉 〈y| ∈ S =⇒ E |x〉 〈y|E† ∈ Qn
=⇒ |ψx〉 〈ψy| ∈ Qn
=⇒ 〈ψx|ψy〉 = 0.

So {|ψx〉}x∈V (G) is an orthogonal representation of G of dimension n, giving ξ(G) ≤ χq(S).
ωq(S) = 1 because it is not possible to have Qn → S if n > 1. For, suppose that such a

homomorphism E existed. There must be some x ∈ V (G) and some i such that 〈x|Ei 6= 0. Since G
is loop free, |x〉 〈x| ∈ S⊥ so E†i |x〉 〈x|Ei ∈ E†S⊥E. But Q⊥n = CI contains no rank-1 operators so
E†S⊥E 6⊆ Q⊥n and E cannot be a homomorphism from Qn to S.

Theorem 5.13. Let S ⊆ L(A) be a non-commutative graph with I ∈ S. Then our α(S) and αq(S)
are equivalent to the independence number and quantum independence number of [DSW13,Dua09,
FS13,BS08].

Proof. This is a consequence of the operational interpretation of non-commutative graph homomor-
phisms which we will prove in section 5.5; however, we give here a direct proof. The independence
number of [DSW13] is the largest number of nonzero vectors {|ψi〉}i such that

|ψi〉 〈ψj | ∈ S⊥ when i 6= j. (5.17)

Given such a collection of n vectors one can define Ei : Cn → A as Ei = |ψi〉 〈i|. Since I ∈ S, (5.17)
requires orthogonal vectors; thus

∑
iE
†
iEi = I so these {Ei} are indeed Kraus operators. Now,

EKnE
† = span{Ei′ |i〉 〈j|Ej′ : i 6= j}

= span{|ψi〉 〈ψj | : i 6= j} ⊆ S⊥,
5 The orthogonal rank of a graph is the smallest dimension of a vector space such that each vertex may be assigned

a nonzero vector, with the vectors of adjacent vertices being orthogonal.
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giving Kn → S⊥, or α(S) ≥ n.
Conversely, take n = α(S). By the definition of α(S), we have Kn → S⊥. Let {Ei} be the

Kraus operators that satisfy EKnE
† ⊆ S⊥, as per definition 5.7. Since

∑
k E
†
kEk = I, for each

i ∈ {1, . . . , n} there must be some k(i) such that Ek(i) |i〉 6= 0. Define |ψi〉 = Ek(i) |i〉. Then for i 6= j,
EKnE

† ⊆ S⊥ =⇒ |ψi〉 〈ψj | ∈ S⊥.
The quantum independence number is the largest rank projector P such that PSP = CP .

Suppose we have such a projector. Let n = rank(P ) and let J : Cn → A be an isometry such that
JJ† = P . Then J†SJ = J†PSPJ = CJ†PJ = CI = Q⊥n . By (5.16), taking C to be the trivial
(one-dimensional) space, this gives Qn → S⊥, or αq(S) ≥ n.

Conversely, take n = αq(S). Since Qn → S⊥, there are Kraus operators {Ei} such that
E†SE ⊆ Q⊥n = CI, as per (5.14). At least one of these Kraus operators, call it E0, must satisfy
E†0E0 6= 0. Since I ∈ S, E†0IE0 ∈ E†SE ⊆ CI, so E†0E0 = αI with α 6= 0. Then J := E0/

√
α is an

isometry and P := JJ† is a rank n projector. Furthermore, PSP = JE†0SE0J
† ⊆ CJIJ† = CP .

5.5 Quantum source-channel coding

We construct a quantum version of source-channel coding, as depicted in fig. 5.2. The channel N
from Alice to Bob is now a quantum channel. Instead of classical inputs x and u, Alice and Bob
receive a bipartite quantum state. One may imagine that a referee Charlie chooses a bipartite mixed
state ρi ∈ L(A)⊗ L(B) from some finite collection and sends the A subsystem to Alice and the B
subsystem to Bob. The details of the collection {ρi} are known ahead of time to Alice and Bob. Bob
must determine i, with zero chance of error, using Alice’s message and his share of ρi. We call this
discrete quantum source-channel coding (discrete QSSC). Here “discrete” refers to i; we will later
quantize even this. Discrete QSSC reduces to classical source-channel coding (section 5.3) by taking
N to be a classical channel and the source to be of the form ρi =

∑
xu P (x, u|i)|x〉 〈x| ⊗ |u〉 〈u|.

Alice’s lab

Bob’s lab

Charlie’s lab

i ρi

E

N

Measure i

A

B

A′

B′

Figure 5.2: Discrete quantum source-channel coding (discrete QSSC).

The most general strategy is for Alice to encode her portion of ρi using some quantum operation
(some CPTP map) E : L(A)→ L(A′) before sending it through N to Bob, and for Bob to perform a
POVM measurement on the joint state consisting of his portion of ρi and the message received from
Alice. After receiving Alice’s message, Bob is in possession of the mixed state

σi = N (E(ρi))

=
∑

jk

(NkEj ⊗ I)ρi(E
†
jN
†
k ⊗ I)

=
∑

jkl

(NkEj ⊗ I) |ψil〉 〈ψil| (E†jN†k ⊗ I), (5.18)
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where the unnormalized vectors |ψil〉 are defined according to ρi =
∑
l |ψil〉 〈ψil|. There is a

measurement that can produce the value i with zero error if and only if the states σi and σi′ are
orthogonal whenever i 6= i′. Since each term of (5.18) is positive semidefinite we have, with brackets
denoting the Hilbert–Schmidt inner product,

〈σi, σi′〉 = 0 ⇐⇒
〈
ψil

∣∣∣(E†jN†k ⊗ I)(Nk′Ej′ ⊗ I)
∣∣∣ψi′l′

〉
= 0 ∀j, j′, k, k′, l, l′

⇐⇒ 〈Ej′TrB{|ψi′l′〉 〈ψil|}E†j , N†k′Nk〉 = 0 ∀j, j′, k, k′, l, l′

⇐⇒ E · TrB{|ψi′l′〉 〈ψil|} · E† ⊥ N†N ∀l, l′.

By definition 5.7, such an encoding E exists if and only if span{TrB{|ψi′l′〉 〈ψil|} : ∀i 6= i′,∀l, l′} →
(N†N)⊥. This immediately leads to the following theorem.

Theorem 5.14. Consider discrete QSSC (fig. 5.2) with i ∈ {1, . . . , n}. For each i, let |ψi〉 ∈ A⊗B⊗C
be a purification of ρi ∈ L(A) ⊗ L(B). Define the isometry J =

∑n
i=1 |ψi〉 〈i|. There is a winning

strategy if and only if S → T where T is the distinguishability graph of N , given by (5.9), and S is
the characteristic graph of the source, given by

S = TrBC{L(C)JKnJ
†}. (5.19)

Suppose that Alice and Bob also share an entanglement resource |λ〉 ∈ A′′ ⊗ B′′. This can
be absorbed into the source, considering the source to be ρi ⊗ |λ〉 〈λ|. Then (5.19) becomes
TrBC{L(C)JKnJ

†} ⊗ Λ where Λ = TrB′′{|λ〉 〈λ|}. This motivates the following definition:

Definition 5.15. Let S and T be trace-free non-commutative graphs. We say there is an entanglement
assisted homomorphism S

∗→ T if there exists an operator Λ � 0 such that S ⊗ Λ → T . The
entanglement assisted quantities α∗(S), αq∗(S), ω∗(S), ωq∗(S), χ∗(S), and χq∗(S) are defined by
using ∗→ rather than → in definition 5.11.

If S and T are induced by classical graphs G and H then S ∗→ T if and only if G ∗→ H as defined
in [BBL+13,CMR+13]. This equivalence follows from the fact that S ∗→ T and G ∗→ H have identical
operational interpretation in terms of entanglement assisted source-channel coding. Our α∗(S)
corresponds to the entanglement assisted independence number of [DSW13] and if S derives from a
classical graph our χ∗(S) corresponds to the entangled chromatic number of [BBL+13,CMR+13].
These quantities, and others, are summarized in table 5.1.

We give some examples.

• Dense coding. Let ρi = |i〉 〈i|A1
⊗ |λ〉 〈λ|A2B

where i ∈ {1, . . . ,m} represents the codeword to
be transmitted and |λ〉 〈λ|A2B

is an entanglement resource shared by Alice and Bob. Take
N to be a noiseless quantum channel of dimension n (i.e. a channel of log n qubits). By
theorem 5.14, dense coding is possible if and only if Km ⊗TrB{|λ〉 〈λ|} → Qn. The well known
bound m ≤ n2 for dense coding gives (Km

∗→ Qn ⇐⇒ m ≤ n2). In other words, ω∗(Qn) = n2

and χq∗(Kn2) = n.

• Entanglement assisted zero-error communication of n different codewords through a noisy
channel N is possible if and only if Kn

∗→ (N†N)⊥. So the one-shot entanglement assisted
classical capacity is logα∗(N†N).

• Classical or quantum one-way communication complexity of a function. Suppose the referee
sends Alice a classical message x and sends Bob a classical message y, with (x, y) ∈ R. How
large of a message must Alice send to Bob such that Bob may compute some function f(x, y)?
The set R and function f are known ahead of time to all parties.
Take ρi =

∑
(x,y)∈R∩f−1(i) |x〉 〈x| ⊗ |y〉 〈y|. Let S = TrBC{L(C)JKnJ

†} from (5.19). Then S
derives (via (5.7)) from the graph G with edges x ∼ x′ ⇐⇒ ∃y s.t. f(x, y) 6= f(x′, y). A
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classical channel of size n suffices iff S → Kn, and a quantum channel suffices iff S → Qn. So
the smallest sufficient n for a classical channel is χ(S) and for a quantum channel is χq(S).
Since S derives from a classical graph, χ(S) and χq(S) are just the chromatic number and
orthogonal rank of G. This reproduces the result of [Wit76] and theorem 8.5.2 of [dW01].

If Alice and Bob can share an entangled state the condition becomes S ∗→ Kn or S ∗→ Qn and
the smallest n is χ∗(S) or χq∗(S).

• One-way communication complexity of nonlocal measurement. Alice and Bob each receive half
of a bipartite state |ψi〉 ∈ L(A)⊗ L(B) drawn from some finite collection agreed to ahead of
time. What is the smallest message that must be sent from Alice to Bob so that Bob can
determine i? Defining S = span{TrB{|ψi〉 〈ψj |} : i 6= j}, a quantum message of dimension n
suffices if and only if S → Qn. So the message from Alice to Bob must be at least logχq(S)
qubits or logχ(S) bits. If the states {|ψi〉} are not distinguishable via one-way local operations
and classical communication (LOCC-1) then χ(S) =∞.

We further generalize by replacing the index i with a quantum state. Instead of the referee
sending ρi, we imagine an isometry J : R → A ⊗ B ⊗ C into which the referee passes a quantum
state |ψ〉 ∈ R. Alice receives subsystem A, Bob receives B, and C is dumped to the environment.
One may think of J as the Stinespring isometry for a channel J : L(R)→ L(A⊗B). We call this
coherent QSSC ; the setup is depicted in fig. 5.3. The goal is for Bob to reproduce the state |ψ〉, with
perfect fidelity. Discrete QSSC is recovered by taking J =

∑
i |ψi〉 〈i| where |ψi〉 ∈ A⊗B ⊗ C is a

purification of ρi ∈ L(A)⊗ L(B), and requiring that the input state be a basis state.

Alice’s lab

Bob’s lab

Charlie’s lab

|ψ〉 J

E

N

D |ψ〉

R

A

B

A′

B′

C

Figure 5.3: Coherent quantum source-channel coding (coherent QSSC).

After Alice’s transmission, Bob is in possession of the state N (E(TrC(J |ψ〉 〈ψ|J†))). In order to
recover |ψ〉, Bob must perform some operation that converts the channel ρ→ N (E(TrC(JρJ†))) into
the identity channel. The Kraus operators of this channel are {(NkEj ⊗ IB ⊗ 〈l|C)J}jkl ⊆ L(R→
B ⊗B′). By the Knill–Laflamme error correction condition [KL97], recovery of |ψ〉 is possible if and
only if, ∀j, j′, k, k′, l, l′,

J†
(
E†jN

†
kNk′Ej′ ⊗ IB ⊗ |l〉 〈l′|C

)
J ∈ CI. (5.20)

An operator is proportional to I if and only if it is orthogonal to all trace free operators, so this
becomes

〈
J†
(
E†jN

†
kNk′Ej′ ⊗ IB ⊗ |l〉 〈l′|C

)
J,X

〉
= 0 ∀j, j′, k, k′, l, l′,∀X ∈ Qn

⇐⇒
〈
Ej′TrB{〈l′|C JXJ† |l〉C}E

†
j , N

†
k′Nk

〉
= 0 ∀j, j′, k, k′, l, l′,∀X ∈ Qn

⇐⇒ E · TrBC{L(C)JQnJ
†} · E† ⊆ (N†N)⊥.

Or, using the terminology of homomorphisms,
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Theorem 5.16. There is a winning strategy for coherent QSSC (fig. 5.3) if and only if S → T where
T is the distinguishability graph of N , given by (5.9), and S is the characteristic graph of the source,
given by

S = TrBC{L(C)JQnJ
†} (5.21)

where n = dim(R).

This differs from theorem 5.14 only in the replacement of Kn by Qn. As before, if Alice and
Bob are allowed to make use of an entanglement resource the condition becomes S ∗→ T rather than
S → T .

We give some examples.

• Teleportation. Take J = IA1
⊗ |λ〉A2B

where I is the identity operator (i.e. the referee directly
gives |ψ〉 to Alice) and |λ〉 is an entanglement resource. Take N to be a perfect classical channel.
By theorem 5.16 teleportation is possible if and only if Qm ⊗ TrB{|λ〉 〈λ|} → Kn where m is
the dimension of the state to be teleported and n is the dimension of the classical channel. The
well known bound m2 ≤ n for teleportation gives (Qm

∗→ Kn ⇐⇒ m2 ≤ n). In other words,
ωq∗(Km2) = m and χ∗(Qm) = m2.

• Zero-error one-shot quantum communication capacity. Take N to be a noisy channel, and take
J : R→ A to be the identity operator (i.e. the referee gives |ψ〉 directly to Alice, and Bob gets
no input). It is possible to send logm error-free qubits though N if and only if Qm → (N†N)⊥.
By definition, m ≤ αq(N

†N). If Alice and Bob can use an entangled state, these conditions
become Qm

∗→ (N†N)⊥ and m ≤ αq∗(N†N).

• Suppose Alice and Bob each have a share of a quantum state that has been cloned in the
standard basis. That is to say, suppose J =

∑n
x=1 |xx〉AB 〈x|R. Can Alice send a classical

message to Bob such that Bob may reconstruct the original quantum state? The characteristic
graph of this source (call it S) is the space of trace-free diagonal matrices. Conjugating by the
Fourier matrix yields a subspace of Kn. So the Fourier transform is a homomorphism S → Kn;
indeed a classical message does suffice.

• Imagine that Alice tries to send a quantum message to Bob, but part of the signal bounces
back. This can be modeled by a channel J : L(R) → L(A) ⊗ L(B). Alice must now send a
second message though a second channel N in order to allow Bob to reconstruct the original
message. This is exactly the setup depicted in fig. 5.3, with Charlie being Alice and J being
the Stinespring isometry of J .

• Correction of algebras. Suppose instead of transmitting |ψ〉 perfectly, one needs only that some
C∗-algebra of observables A be preserved (i.e. the receiver can do any POVM measurement with
elements from A). This reduces to discrete QSSC when A consists of the diagonal operators.
By theorem 2 of [BKK07], this problem is analyzed via a straightforward modification of the
Knill–Laflamme condition: CI in (5.20) should be replaced by the space of operators that
commute with everything in A (the commutant of A); theorem 5.16 is modified by replacing
Qn with the space perpendicular to the commutant of A. Theorem 5.14 is recovered by taking
A to consist of the diagonal operators.

• Consider discrete QSSC with the inputs ρ1, ρ2, ρ3, ρ4 being the four Bell states (or even three
of the four). The characteristic graph is Q2. This is the same as the graph for coherent QSSC
with the goal being for Alice to transmit an arbitrary qubit to Bob (J : R→ A is the identity
operator). Since the characteristic graphs are the same for the two problems, they require the
same communication resources.
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Quantity Interpretation
Kn = {M ∈ L(Cn) : Mii =
0}

Classical complete graph. The set of n× n matrices with
zeros down the diagonal.

Qn = (CIn)⊥ Quantum complete graph. The set of trace-free n × n
matrices.

N = span{Ni} Span of Kraus operators for channel N .

N†N = span{N†i Nj} Confusability graph of channel N .
(N†N)⊥ Distinguishability graph of channel N .
S → T ⇐⇒ ESE† ⊆ T
with E span of Kraus opera-
tors

Graph homomorphism. Source with characteristic graph
S can be transmitted using channel with distinguishability
graph T .

S
∗→ T ⇐⇒ (∃Λ � 0

s.t. S ⊗ Λ→ T )
Entanglement assisted homomorphism. As before, but
sender and receiver share an entanglement resource.

ω(S) = max{n : Kn → S} Clique number. One-shot classical capacity of channel with
distinguishability graph S is logω(S).

ωq(S) = max{n : Qn → S} Quantum clique number. One-shot quantum capacity of
channel with distinguishability graph S is logω(S).

α(S) = ω(S⊥) Independence number. One-shot classical capacity of chan-
nel with confusability graph S is logα(S).

αq(S) = ωq(S
⊥) Quantum independence number. One-shot quantum ca-

pacity of channel with confusability graph S is logα(S).
χ(S) = min{n : S → Kn} Chromatic number. Source with characteristic graph S

can be transmitted using logχ(S) classical bits.
χq(S) = min{n : S → Qn} Quantum chromatic number. Source with characteristic

graph S can be transmitted using logχq(S) qubits. For
classical graphs this equals the orthogonal rank.

ω∗, ωq∗, α∗, αq∗, χ∗, χq∗ Entanglement assisted quantities. Replace → with ∗→ in
above definitions. Relevant when sender and receiver share
an entanglement resource.

Table 5.1: Basic definitions used in this paper, and their interpretations. See definition 5.7 for the
full definition of S → T . See theorems 5.14 and 5.16 for the definition of characteristic graph.
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Lemma 2 of [Dua09] states that every non-commutative graph containing the identity is the
confusability graph of some channel (equivalently, every trace-free non-commutative graph is the
distinguishability graph of some channel). A similar statement holds for sources.

Theorem 5.17. Every non-commutative graph S is the characteristic graph for discrete QSSC with
only two inputs (i.e. ρ0 and ρ1).

Proof. Let S ∈ L(A) be a non-commutative graph and let {Sx}x∈X be a basis of S, with each Sx
being Hermitian. That such a Hermitian basis always exists is shown in [Dua09]. Without loss of
generality, assume that each Sx is normalized under the Frobenius norm. Let (Sx)ij be the entries
of matrix Sx and define |Sx〉 =

∑
ij(Sx)ij |i〉A |j〉B. Also define |Φ〉 = dim(A)−1/2

∑
i |i〉A ⊗ |i〉B.

Consider discrete QSSC with sources ρi = TrC{|ψi〉 〈ψi|} for i ∈ {0, 1} with |ψi〉 ∈ A⊗B ⊗B′ ⊗ C
defined by

|ψ0〉 = |X|−1/2
∑

x

|Φ〉 ⊗ |x〉B′ ⊗ |x〉C

|ψ1〉 = |X|−1/2
∑

x

|Sx〉 ⊗ |x〉B′ ⊗ |x〉C

Alice receives subsystem A and Bob receives subsystems B⊗B′. Subsystem C goes to the environment.
As per theorem 5.14, the characteristic graph is

S = TrBB′C{L(C) |ψ1〉 〈ψ0|}+ h.c.
= spanx{TrB(|Sx〉 〈Φ|)}+ h.c.
= spanx{Sx}+ h.c. = S

where “+h.c.” means that the adjoints of the operators are also included in the subspace.

Note that we didn’t require S to be trace-free in theorem 5.17; however, if S is not trace-free
then source-channel coding will be impossible: ρ0 and ρ1 would be non-orthogonal and so would not
be distinguishable by any measurement.

5.6 ϑ is a homomorphism monotone
We will show that ϑ is monotone under entanglement assisted homomorphisms of non-commutative
graphs. This leads to a Lovász sandwich theorem for non-commutative graphs, and a bound on
quantum source-channel coding. We begin by showing ϑ to be insensitive to entanglement. Recall that
a source having non-commutative graph S, combined with an entanglement resource |λ〉 ∈ A′′ ⊗B′′,
yields a composite source with non-commutative graph S ⊗ Λ where Λ = TrB′′{|λ〉 〈λ|}.
Lemma 5.18. Let S be a trace-free non-commutative graph. Let Λ be a positive operator. Then
ϑ(S) = ϑ(S ⊗ Λ).

Proof. Suppose S ⊆ L(A) and Λ ∈ L(B). By (5.10) we have

ϑ(S) = max{‖I + T‖ : T ∈ S ⊗ L(Cm), I + T � 0} (5.22)

ϑ(S ⊗ Λ) = max{‖I + T‖ : T ∈ S ⊗ Λ⊗ L(Cn), I + T � 0}. (5.23)

In [DSW13] is it shown that the ancillary space can be taken to be any dimension at least as large as
dim(A), so in (5.22)-(5.23) we may take any values m ≥ dim(A) and n ≥ dim(A⊗B).

Take n = dim(A ⊗ B) and m = ndim(B). Any T feasible for (5.23) is also feasible for (5.22)
since Λ⊗ L(Cn) ⊆ L(Cm). So ϑ(S) ≥ ϑ(S ⊗ Λ).

Now take m = n = dim(A⊗B). Let T be feasible for (5.22). Without loss of generality, assume
‖Λ‖ = 1. Then T ′ := T ⊗ Λ is feasible for (5.23). Indeed, T � −I =⇒ T ′ � −I since Λ � 0 and
‖Λ‖ ≤ 1. Also, ‖I + T ′‖ ≥ ‖I + T‖ since Λ � 0 and ‖Λ‖ ≥ 1. So ϑ(S ⊗ Λ) ≥ ϑ(S).
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Before we prove the main theorem, we introduce some notation that will also be used in section 5.8.
For any (finite dimensional) Hilbert space A, define the state

|Φ〉A =
∑

i

|i〉A ⊗ |i〉A′ . (5.24)

where A′ is another Hilbert space of the same dimension as A. Note that this provides an isomorphism
between A and the dual space of A′ via the action |ψ〉A → 〈Φ| (|ψ〉A ⊗ IA′). A bar over an
operator denotes entrywise complex conjugation in the standard basis (i.e. the basis used in (5.24)).
Additionally, the bar will be understood to move an operator to the primed spaces (or from primed
to unprimed). For example, if J : A→ B ⊗ C then J : A′ → B′ ⊗ C ′ is equal to

J = TrBC{|Φ〉BC 〈Φ|A J†}. (5.25)

We now prove the main theorem of this section: that ϑ is monotone under entanglement assisted
homomorphisms. Such an inequality was already known for classical graphs [CMR+13].

Theorem 5.19. Let S and T be trace-free non-commutative graphs. If S → T or S ∗→ T then
ϑ(S) ≤ ϑ(T ).

Proof. If we prove monotonicity under S → T then monotonicity under S ∗→ T follows. Indeed,
if S ∗→ T then there is a Λ � 0 such that S ⊗ Λ → T . Supposing that ϑ is monotone under
(non-entanglement assisted) homomorphisms, we have ϑ(S ⊗ Λ) ≤ ϑ(T ). Lemma 5.18 then gives
ϑ(S) ≤ ϑ(T ).

We now show that S → T implies ϑ(S) ≤ ϑ(T ). This can be seen as a consequence of corollaries
from [DSW13]. Let S ⊆ L(A) and T ⊆ L(B) be trace-free non-commutative graphs with S → T . By
definition 5.7 there is a Hilbert space C and an isometry J : A→ B⊗C such that J†(T⊥⊗L(C))J ⊆
S⊥. Then

ϑ̃(T⊥) = ϑ̃(T⊥)ϑ̃(L(C)) (Since ϑ̃(L(C)) = 1)

= ϑ̃(T⊥ ⊗ L(C)) (Corollary 10 of [DSW13])

≥ ϑ̃(J†(T⊥ ⊗ L(C))J) (Corollary 11 of [DSW13])

≥ ϑ̃(S⊥). (Corollary 11 of [DSW13])

We present also a more direct proof, since this can later be generalized for the ϑ
′
C and ϑ

+

C
quantities of section 5.8. Let S ⊆ L(A) and T ⊆ L(B) be trace-free non-commutative graphs with
S → T . By definition there is a CPTP map E : L(A)→ L(B) with Kraus operators {Ei} such that
E†T⊥E ⊆ S⊥ where E = span{Ei}. Let J : A→ B ⊗C be the Stinespring isometry for the channel
E , so that J =

∑
i |i〉C Ei. Let J : A′ → B′ ⊗ C ′ be the entrywise complex conjugate of J . Recall

that J takes the form (5.25).
Let Y ′ ⊆ L(B)⊗ L(B′) be an optimal solution for (5.11) for ϑ(T ). Define Y ⊆ L(A)⊗ L(A′) as

Y =
∑

ij

(Ei ⊗ Ei)†Y ′(Ej ⊗ Ej)

= (J ⊗ J)†(|Φ〉C ⊗ Y ′ ⊗ 〈Φ|C)(J ⊗ J). (5.26)

We have that

Y ′ ∈ T⊥ ⊗ L(B′) =⇒ Y ∈ E†T⊥E ⊗ E†L(B′)E

=⇒ Y ∈ S⊥ ⊗ L(A′). (5.27)

122



Dirac notation becomes unworkable with so many Hilbert spaces, so we will make use of diagrams
similar to those of [GWYC06] (such diagrams have been used for example in [SG11,BO11]). Operators
and states are denoted by labeled boxes and multiplication (or traces or tensor contraction) by wires.
This is very much like standard quantum circuits, except that the diagram has no interpretation of
time ordering. Wires have an arrow pointing away from the ket space and towards the bra space,
and are labeled with the corresponding Hilbert space. Labeled circles represent the transposer
operators (5.24):

A
A A′

= |Ψ〉A , A
A A′

= 〈Ψ|A

With this notation, (5.26) becomes

Y

A

A′

A

A′
=

J†

J
†

J

J

Y ′C C

A

A′

A

A′

B

B′

B

B′

(5.28)

The operator (J ⊗ J)†(|Φ〉C ⊗ IBB′) turns the transposer |Φ〉B into |Φ〉A:

(J ⊗ J)†(|Φ〉C ⊗ |Φ〉B) = (J† ⊗ J†)(|Φ〉C ⊗ |Φ〉B)

= (J†J ⊗ I) |Φ〉A = |Φ〉A .

With diagrams, the same derivation is written as

J†

J
†

BC

A

A

=

J†

JA

A

A′
BC =

J†J

A

A

A′
= A

A

A′

Consequently we have Y ′ � |Φ〉 〈Φ|B =⇒ Y � |Φ〉 〈Φ|A so Y is feasible for (5.11) for ϑ(S). To
get ϑ(S) ≤ ϑ(T ) it remains only to show ‖TrAY ‖ ≤ ‖TrBY ′‖. Let ρ ∈ L(A′) be a density operator
achieving Tr{(IA ⊗ ρ)Y } = ‖TrAY ‖. Plugging (5.28) (the definition of Y ) into Tr{(IA ⊗ ρ)Y } gives

J†

J
†

J

J

Y ′C C

ρ

A

A′ A′

B

B′

B

B′

= Y ′C C

JρJ
†

JJ†

B B

B′ B′

≤ Y ′C C

JρJ
†

B

B′ B′

=
Y ′

JρJ
†

B

C′

B′ B′

The first equality involves only a rearrangement of the diagram. The inequality follows from the
fact that JJ† � IBC (since JJ† is a projector) and the rest of the diagram represents a positive
semidefinite operator.6 The last equality uses TrC{|Φ〉 〈Φ|C} = IC′ . The same derivation can be

6 If a portion of a diagram has reflection symmetry, with the operators located on the reflection axis being positive
semidefinite, then that portion of the diagram is positive semidefinite [GWYC06]. This follows from the fact that
M � 0 =⇒ N†MN � 0.
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written in equations as

TrAA′{(IA ⊗ ρ)Y } = TrAA′{(IA ⊗ ρ)(J ⊗ J)†(|Φ〉C ⊗ Y ′ ⊗ 〈Φ|C)(J ⊗ J)}
= TrBB′CC′{(JJ† ⊗ JρJ

†
)(|Φ〉C ⊗ Y ′ ⊗ 〈Φ|C)}

≤ TrBB′CC′{(IBC ⊗ JρJ
†
)(|Φ〉C ⊗ Y ′ ⊗ 〈Φ|C)}

= TrBB′C′{(IB ⊗ JρJ
†
)(Y ′ ⊗ IC′)}. (5.29)

Since J is an isometry, TrC′{JρJ
†} is a density operator. So (5.29) is bounded from above by

‖TrBY ′‖ and we have ‖TrAY ‖ ≤ ‖TrBY ′‖ as desired.

An immediate corollary is that ϑ satisfies a sandwich theorem analogous to (5.6).

Corollary 5.20. Let S be a trace-free non-commutative graph. Then

1. ω∗(S) ≤ ϑ(S) ≤ χ∗(S).

2. ωq∗(S) ≤
√
ϑ(S) ≤ χq∗(S).

Proof. This follows from applying theorem 5.19 to definition 5.15 and using the fact that ϑ(Kn) = n
and ϑ(Qn) = n2. That ϑ(Kn) and ϑ(Qn) take these values is not hard to see, and is also proved
in [DSW13].

The bound on ω∗(S) and ωq∗(S) was shown already in [DSW13], although it was stated in terms
of α∗ and αq∗. The bound on χ∗(S) and χq∗(S) is new, although the bound on χ∗(S) was known
already for classical graphs [BBL+13]. Note that, since for example ω(S) ≤ ω∗(S), we also have the

weaker sandwich theorem ω(S) ≤ ϑ(S) ≤ χ(S) and ωq(S) ≤
√
ϑ(S) ≤ χq(S).

This bound
√
ϑ(S) ≤ χq(S) is not particularly tight when S corresponds to a classical graph G,

for the following reason. In such cases χq(S) = ξ(G), the orthogonal rank. But it is known that
ϑ(S) = ϑ̄(G) ≤ ξ(G) [Lov79], so in this case the square root over ϑ is unnecessary. The necessity of
the square root arises from the possibility of dense coding, since we are bounding the entanglement
assisted quantities in corollary 5.20. Notice that ωq∗(S) =

⌊√
ω∗(S)

⌋
and χq∗(S) =

⌈√
χ∗(S)

⌉
since

a quantum channel of dimension n can simulate a classical channel of dimension n2, and teleportation
can do the reverse.

The square root in corollary 5.20 could be eliminated by defining a different generalization of
Lovász’s ϑ̄ that is monotone under homomorphisms and which takes the value n on the graph Qn.
Such a quantity would necessarily not be monotone under entanglement assisted homomorphisms,
since Q2

∗→ K4. Finding such a quantity is left as an open question.
Theorem 5.19 can be applied to give bounds for all of the examples in section 5.5. Two are

especially noteworthy: theorem 5.19 gives the well known bounds n ≤ m2 for dense coding and
n2 ≤ m for teleportation (where n is the dimension of the source and m is the dimension of the
channel).

5.7 Graph products and parallel repetition
Consider the problem of sending several parallel sources using several parallel channels. In general
these several sources (as well as the channels) could all be distinct, and we will in fact consider this.
In the special case where the sources are identical, as well as the channels, one may ask how many
channel uses are required for each instance of the source. This is known as the cost rate. For classical
sources and channels, we saw already (proposition 5.5) that a bound on cost rate is given in terms of
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the Lovász ϑ̄ number. The goal of this section is to prove an analogous bound in the case of quantum
sources and channels. To build this theory, we begin with an investigation of the classical case.

Consider two channels N (v|s) and N ′(v′|s′) having distinguishability graphs H and H ′. It is
not hard to see that the composite channel N ′′(v, v′|s, s′) = N (v|s)N ′(v′|s′) has a distinguishability
graph with vertices V (H)× V (H ′) and edges

(x, x′) ∼ (y, y′) ⇐⇒ (x ∼ y) or (x′ ∼ y′). (5.30)

This is known as the disjunctive product, denoted H ∗ H ′. If n identical copies of N are used in
parallel, the resulting composite channel will have distinguishability graph H∗n = H ∗H ∗ . . . ∗H.
Since the one-shot capacity of a channel is logω(H) bits, the capacity (per-channel use) of n parallel
channels is 1

n logω(H∗n). The capacity in the limit n→∞ is known as the Shannon capacity of the
channel,

C0(H) = lim
n→∞

1

n
logω(H∗n). (5.31)

The complement in the argument of C0(H) is because we consider the distinguishability graph rather
than the confusability graph, in terms of which C0 is typically defined. Since ϑ̄(H∗n) = ϑ̄(H)n, it
holds that C0(H) ≤ log ϑ̄(H) [Lov79]. In fact this was the original motivation for defining the ϑ
number.

Now consider parallel sources. Recall from section 5.3 that the sources P (x, u|i) we consider are
somewhat generalized from what is traditionally considered. The traditional definition is obtained by
requiring P (x, u|i) 6= 0 only when x = i. In this case, the characteristic graphs of parallel sources
combine by the strong product [Wit76] which has vertices V (G)× V (G′) and edges

(x, x′) ∼ (y, y′) ⇐⇒ (x ∼ y and x′ ∼ y′) or
(x = y and x′ ∼ y′) or
(x ∼ y and x′ = y′). (5.32)

Adapting this to non-commutative graphs is problematic because there is no clear analogue of the
condition x = y. But already for our generalized sources, which can have P (x, u|i) 6= 0 when x 6= i,
the product rule needs modification.

Consider two parallel sources P (x, u|i) and P (x′, u′|i′) (these can be over different alphabets) with
characteristic graphs G and G′. Call the combined source P ′′(x, x′, u, u′|i, i′) := P (x, u|i)P (x′, u′|i′).
This has characteristic graph G′′ with vertex set V (G)× V (G′) and edges given by a generalization
of (5.32). To this end, we introduce a graph G0 having the same vertices as G but with edges

x ∼G0 y ⇐⇒ ∃u,∃i s.t. P (x, u|i)P (y, u|i) 6= 0. (5.33)

G′0 is defined similarly. If P (x, u|i) 6= 0 only when x = i then G0 has edges x ∼G0
y ⇐⇒ x = y. In

other words G0 consists only of loops. So (5.33) can be regarded as a set of generalized loops. We
will call the pair (G,G0) a graph with generalized loops. We can now compute G′′, the characteristic
graph for the composite source:

(x, x′) ∼G′′ (y, y′) ⇐⇒ ∃u, u′,∃(i, i′) 6= (j, j′) s.t.
P ′′(x, x′, u, u′|i, i′)P ′′(y, y′, u, u′|j, j′) 6= 0

⇐⇒ (x ∼G y and x′ ∼G′ y′) or
(x ∼G0 y and x′ ∼G′ y′) or
(x ∼G y and x′ ∼G′0 y

′). (5.34)
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And the graph G′′0 , defined analogously to (5.33), has edges

(x, x′) ∼G′′0 (y, y′) ⇐⇒ ∃u, u′,∃i, i′ s.t.
P ′′(x, x′, u, u′|i, i′)P ′′(y, y′, u, u′|i, i′) 6= 0

⇐⇒ x ∼G0
y and x′ ∼G′0 y

′. (5.35)

We introduce the notation (G′′, G′′0) = (G,G0)�(G′, G′0) as shorthand for (5.34)-(5.35). By induction,
m parallel instances of a source yields a characteristic graph (G,G0)�m := (G,G0) � (G,G0) � · · ·�
(G,G0).

For convenience we will abuse notation by treating these ordered pairs as being graphs themselves.
For instance, (G,G0)�m → H will be taken to mean G′ → H where (G′, G′0) = (G,G0)�m; similarly
ϑ̄((G,G0)�m) will be taken to mean ϑ̄(G′) and (G,G0)�m ⊇ G�m to mean G′ ⊇ G�m.

Now we can show that the condition P (x, u|i) 6= 0 only when x = i can be dropped in proposi-
tion 5.5. We will later generalize this to quantum sources and quantum channels.

Proposition 5.21. Let P (x, u|i) be a classical source and N (v|s) a classical channel. Let graphs
G and H be given by (5.2) and (5.1). Then m parallel instances of the source can be sent using n
parallel instances of the channel only if

n

m
≥ log ϑ̄(G)

log ϑ̄(H)
.

Proof. Without loss of generality assume that each x is possible. In other words, assume that for
each x there is an i and u such that P (x, u|i) 6= 0. Generality is not lost because one can decrease
the alphabet associated with x, removing values that can never occur. Reducing this alphabet only
removes isolated vertices from G, and so doesn’t affect the value of ϑ̄(G). Let G0 be defined as
in (5.33). Since each x is possible, this graph has loops on all vertices: x ∼G0

x for all x.
As per the above discussion, the composite source (consisting of m parallel instances of P (x, u|i))

will have characteristic graph (G,G0)�m. Since G0 has loops on all vertices, our generalized strong
product (5.34) has at least as many edges as the standard strong product (5.32). Since ϑ̄ is monotone
increasing under addition of edges and is multiplicative under the strong product [Knu94] we have
ϑ̄((G,G0)�m) ≥ ϑ̄(G�m) = ϑ̄(G)m.

The distinguishability graph of n parallel instances of the channel N (v|s) is H∗n. Since ϑ̄
is multiplicative under the disjunctive product [Lov79] we have ϑ̄(H∗n) = ϑ̄(H)n. If m parallel
sources can be sent via n parallel channels then (G,G0)�m → H∗n. Since ϑ̄ is monotone under
homomorphisms,

(G,G0)�m → H∗n =⇒ ϑ̄((G,G0)�m) ≤ ϑ̄(H∗n)

=⇒ ϑ̄(G)m ≤ ϑ̄(H)n

=⇒ n

m
≥ log ϑ̄(G)

log ϑ̄(H)
.

Similar arguments apply for quantum source-channel coding. It is easy to see that the confusability
graphs for parallel channels should combine by tensor product since the Kraus operators combine by
tensor product. We have been using instead the distinguishability graph, which then combines as
(S⊥ ⊗ T⊥)⊥. We take this as the definition of disjunctive product:

Definition 5.22. Let S ⊆ L(A) and T ⊆ L(B) be non-commutative graphs. Their disjunctive
product is S ∗ T = S ⊗ L(B) + L(A)⊗ T = (S⊥ ⊗ T⊥)⊥.
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When S and T derive from classical graphs this definition is equivalent to (5.30). We will use the
notation S∗n := S ∗ S ∗ . . . ∗ S. Analogous to (5.31), the Shannon capacity of a quantum channel
with distinguishability graph T is

C0(T⊥) = lim
n→∞

1

n
logω(T ∗n)

It is known that ϑ(T ) is an upper bound on C0(T⊥), since ϑ(T ∗n) = ϑ̃((T⊥)⊗n) = ϑ(T )n [DSW13].
Consider now two parallel sources, with characteristic graphs S and S′. Analogous to (5.33) we

define (S, S0), a non-commutative graph with generalized loops. For discrete QSSC, the subject of
theorem 5.14, define

S = TrBC{L(C)JKrJ
†}

S0 = TrBC{L(C)JK⊥r J
†} (5.36)

and for coherent QSSC, the subject of theorem 5.16, define

S = TrBC{L(C)JQrJ
†}

S0 = TrBC{L(C)JQ⊥r J
†}

= TrBC{L(C)JJ†}. (5.37)

Analogous to (5.34)-(5.35) define the strong product (S′′, S′′0 ) = (S, S0) � (S′, S′0) where

S′′ = (S ⊗ S′) + (S0 ⊗ S′) + (S ⊗ S′0)

S′′0 = S0 ⊗ S′0. (5.38)

If S, S0, S
′, S′0 correspond to classical graphs G,G0, G

′, G′0 then this product corresponds to the
classical graph (G,G0) � (G′, G′0). If G0 and G′0 consist of only loops on each vertex (i.e. S0 =
span{|x〉 〈x|} and similarly for S′0) then this corresponds to G�G′. Define the graph power (S, S0)�m

to be repeated application of (5.38).
Other graph products could be defined similarly. For example, the Cartesian product of graphs,

G �G′ is defined to have edges (x, x′) ∼ (y, y′) ⇐⇒ (x = y ∧ x′ ∼ y′) ∨ (x ∼ y ∧ x′ = y′), so for
non-commutative graphs one could define (S′′, S′′0 ) = (S, S0)� (S′, S′0) with S′′ = (S0⊗S′) + (S⊗S′0)
and S′′0 = S0 ⊗ S′0. The complement of a graph has edges x 6∼ y ∧ x 6= y, which would have
non-commutative analogue (S, S0) = (S⊥ \ S0, S0), assuming S0 ⊆ S⊥. We will not have occasion
to consider such constructions, but mention it as a starting point for possible development of a
richer theory of non-commutative graphs. A similar concept was explored in [DSW10]; however, they
suggested a specific form of S0 in terms of the multiplicative domain of a channel whereas we leave
the form of S0 to be determined by the application at hand.

As before, we abuse notation and take (S, S0)�m → T to mean S′ → T where (S′, S′0) = (S, S0)�m,
and ϑ̄((S, S0)�m) to mean ϑ̄(S′). The strong product (5.38) indeed corresponds to the characteristic
graph of parallel sources:

Theorem 5.23. Consider discrete QSSC with two parallel sources {|ψi〉}i and {|ψ′i′〉}i′ . Let J :
R → A ⊗ B ⊗ C and J ′ : R′ → A′ ⊗ B′ ⊗ C ′ be the isometries corresponding to these sources, as
in theorem 5.14. Let (S, S0) and (S′, S′0) be the characteristic graphs (with generalized loops) for
these two sources, as defined by (5.36), and similarly (S′′, S′′0 ) for the joint source {|ψi〉 ⊗ |ψ′i′〉}i,i′ .
Then it holds that (S′′, S′′0 ) = (S, S0) � (S′, S′0). These two sources can be sent using one copy of the
channel N iff

(S, S0) � (S′, S′0)→ T (5.39)

where T = (N†N)⊥.
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The analogous statement holds for coherent QSSC, where now (S, S0), (S′, S′0), and (S′′, S′′0 ) are
defined using (5.37) rather than (5.36).

In either case (discrete or coherent QSSC), it is possible to send m copies of a source using n
copies of a channel iff

(S, S0)�m → T ∗n. (5.40)

Proof. We give the proof only for discrete QSSC; the proof for coherent QSSC follows from similar
arguments. A state from the joint source will be of the form |ψ′′ii′〉 = |ψi〉⊗|ψ′i′〉 and the corresponding
isometry will be J ′′ = J ⊗ J ′, so we have (according to (5.36))

S′′ = TrBB′CC′{L(C ⊗ C ′)J ′′Kr′′J
′′†}

S′′0 = TrBB′CC′{L(C ⊗ C ′)J ′′K⊥r′′J ′′†}
where r′′ = rr′ = dim(R) dim(R′). It is readily verified that (S′′, S′′0 ) = (S, S0) � (S′, S′0), since

Kr′′ = Kr ⊗Kr′ +K⊥r ⊗Kr′ +Kr ⊗K⊥r′ ,
K⊥r′′ = K⊥r ⊗K⊥r′ .

By theorem 5.14, the joint source can be sent using a single use of channel N iff S′′ → T , that is to
say iff condition (5.39) holds.

By induction, m instances of a source can be sent with a single channel use iff (S, S0)�m → T .
Since the distinguishability graph of n copies of the channel is T ∗n, it is possible to send m instances
of the source using n instances of the channel iff (S, S0)�m → T ∗n.

For classical source-channel coding the amount of communication needed to transmit a joint
source is at least as much as is needed for each individual source, since the second source can always
be simulated: Alice and Bob can just agree ahead of time on some x′ and u′ that can be emitted be
the second source. Somewhat surprisingly, this does not necessarily hold for quantum source-channel
coding. For example, consider the following two sources. The first source is some classical source
for which an entanglement resource |λ〉 〈λ| would allow for more efficient transmission. In other
words, χ(S) is large and χ∗(S) is small. Examples of such graphs are given in, e.g. [AHKS06].
The second source consists of only a single possible input: |λ〉 〈λ|. So S′ = ∅ and S′0 = CΛ
where Λ = TrB{|λ〉 〈λ|}. Then the first source requires an amount of communication χ(S), the
second requires no communication (i.e. χ(S′) = 1), but the joint source requires communication
χ∗(S) < max{χ(S), χ(S′)}.

Entanglement assisted chromatic number does not exhibit this same anomaly. Indeed, the joint
source can never be easier to transmit than either of the individual sources since Alice and Bob can
always simulate (some particular input from) the second source, by choosing said state ahead of time
and adding this to their entanglement resource. For a similar reason, even without entanglement
assistance a joint source is not easier to transmit than the individual sources in the case where the
individual sources are each capable of producing a product state: Alice and Bob can simulate any
of these sources by producing the product state themselves, in order to turn a single source into (a
subset of) the joint source.

For classical source-channel coding, we defined the cost rate as the infimum of n/m such that
m instances of the source can be transmitted using n instances of the channel. As per the above
discussion, this can be achieved iff (G,G0)�m → H∗n, so the cost rate is

lim
m→∞

1

m
min

{
n : (G,G0)�m → H∗n

}
.

Cost rate for quantum source-channel coding can be defined similarly,

lim
m→∞

1

m
min

{
n : (S, S0)�m → T ∗n

}
, (5.41)
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where (S, S0) is the characteristic graph of the source (as per (5.36) or (5.37)) and T is the distin-
guishability graph of the channel. Similarly, the entanglement assisted cost rate is

lim
m→∞

1

m
min

{
n : (S, S0)�m

∗→ T ∗n
}
. (5.42)

Clearly (5.42) ≤ (5.41). For the classical case, the Lovász ϑ̄ number is multiplicative under the
relevant graph products and is a homomorphism monotone, so it leads to a lower bound on the cost
rate, proposition 5.21. A similar bound applies for quantum source-channel coding, with a caveat.
The ϑ quantity is not multiplicative under strong product in general; however, it is when S0 and
S′0 contain the identity. So our generalization of proposition 5.21 will require I ∈ S0. This happens
for example when the states emitted by the source include a maximally entangled state, or product
states with Alice’s shares forming a complete orthonormal basis (such as is the case with classical
source-channel coding). We have then the following bound on cost rate.

Theorem 5.24. Consider a source with characteristic graph (S, S0), defined as in (5.36) for discrete
QSSC or as in (5.37) for coherent QSSC. Consider a noisy quantum channel N with distinguishability
graph T = (N†N)⊥. If I ∈ S0 then the entanglement assisted cost rate (5.42) is lower bounded by
log ϑ(S)/ log ϑ(T ).

Proof. Since I ∈ S0, the ϑ quantity is multiplicative under both strong and disjunctive graph powers,
by lemma 5.25. Using this fact, and the fact that ϑ is monotone under entanglement assisted
homomorphisms, we have

(5.42) ≥ lim
m→∞

1

m
min

{
n : ϑ((S, S0)�m) ≤ ϑ(T ∗n)

}

= lim
m→∞

1

m
min

{
n : ϑ(S)m ≤ ϑ(T )n

}

= lim
m→∞

1

m
min

{
n : log ϑ(S)/ log ϑ(T ) ≤ n/m

}

= log ϑ(S)/ log ϑ(T ).

We now prove the lemma used in the preceding proof.

Lemma 5.25. Let S and S′ be trace-free non-commutative graphs. Then,

• ϑ(S ∗ S′) = ϑ(S)ϑ(S′)

• ϑ((S, S0) � (S′, S′0)) = ϑ(S)ϑ(S′) if I ∈ S0 and I ∈ S′0
Proof. From [DSW13] we have ϑ̃(S⊥ ⊗ S′⊥) = ϑ̃(S⊥)ϑ̃(S′⊥). But (S⊥ ⊗ S′⊥)⊥ = S ∗ S′, so
ϑ(S ∗ S′) = ϑ(S)ϑ(S′). Since (S, S0) � (S′, S′0) ⊆ S ∗ S′ and since ϑ is monotone decreasing under
subsets, we have

ϑ((S, S0) � (S′, S′0)) ≤ ϑ(S ∗ S′) = ϑ(S)ϑ(S′).

Let X be an optimal solution to (5.10) for ϑ(S), from definition 5.6. Then X ∈ S ⊗ L(B) (for some
Hilbert space B), I+X � 0, and ‖I +X‖ = ϑ(S). Similarly, there is an X ′ ∈ S′⊗L(B′), I+X ′ � 0,
and ‖I +X ′‖ = ϑ(S′). Define

X ′′ = (IAB +X)⊗ (IA′B′ +X ′)− IAA′BB′ .
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Clearly I +X ′′ � 0. Also,

X ′′ = X ⊗X ′ + IAB ⊗X ′ +X ⊗ IA′B′
∈ [S ⊗ S′ + IA ⊗ S′ + S ⊗ IA′ ]⊗ L(BB′)

⊆ [S ⊗ S′ + S0 ⊗ S′ + S ⊗ S′0]⊗ L(BB′)

= [(S, S0) � (S′, S′0)]⊗ L(BB′).

So X ′′ is feasible for (5.10) for ϑ((S, S0) � (S′, S′0)). Therefore

ϑ((S, S0) � (S′, S′0)) ≥ ‖I +X ′′‖
= ‖(I +X)⊗ (I +X ′)‖
= ϑ(S)ϑ(S′).

5.8 Schrijver and Szegedy
In this section we will provide a generalization to non-commutative graphs for two quantities related to
Lovász’s ϑ: Schrijver’s ϑ′ and Szegedy’s ϑ+. Schrijver’s number comes from adding extra constraints
to the maximization program for ϑ, yielding a smaller value; Szegedy’s number comes from adding
extra constraints to the minimization (dual) program for ϑ, yielding a larger value. We will consider
the complimentary quantities ϑ̄′(G) = ϑ′(G) and ϑ̄+(G) = ϑ+(G). These are homomorphism
monotones in the same sense that ϑ̄ is [dCST13]; therefore they satisfy the sandwich theorem

ω(G) ≤ ϑ̄′(G) ≤ ϑ̄(G) ≤ ϑ̄+(G) ≤ χ(G).

These quantities are not suitable for bounding asymptotic channel capacity or cost rate for source-
channel coding because they are not multiplicative under the appropriate graph products [CMR+13].

For classical graphs these quantities have been shown to be monotone under entanglement
assisted homomorphisms [CMR+13]. Strangely enough, our generalization to non-commutative
graphs will yield quantities monotone under homomorphisms but not under entanglement assisted
homomorphisms. For classical graphs the gap between ϑ̄′(G) and ϑ̄+(G) tends to be small or, often,
zero. For non-commutative graphs the gap tends to be much more extreme, sometimes infinite, even
for random graphs of small dimension. After developing basic properties of these quantities we will
show how they can be used to reproduce some results from the literature regarding entanglement
assisted activation of one-shot channel capacity and impossibility of one-way LOCC measurement
of entangled states. Also we will provide a channel for which maximally entangled states are not
sufficient for achieving the entanglement assisted one-shot capacity.

The classical quantities are defined as follows [Lov79,Knu94,Sch79,MRRJ78,Sze94].

Definition 5.26. The Lovász, Schrijver, and Szegedy numbers of the complement of a graph,
ϑ̄(G), ϑ̄′(G), and ϑ̄+(G), are defined by the following dual (and equivalent) semidefinite programs.
All matrices are either real or complex (it doesn’t matter), J is the all-ones matrix, and N is
the cone of symmetric entrywise non-negative matrices. Take S = span{|x〉 〈y| : x ∼ y} and
S0 = span{|x〉 〈x| : x ∈ V (G)} (the diagonal matrices).

ϑ̄(G) = max〈B, J〉 s.t. B � 0,TrB = 1, B ∈ S + S0 (5.43)
ϑ̄′(G) = max〈B, J〉 s.t. B � 0,TrB = 1, B ∈ S + S0, B ∈ N (5.44)

ϑ̄+(G) = max〈B, J〉 s.t. B � 0,TrB = 1, B + L ∈ S + S0, L ∈ N (5.45)

ϑ̄(G) = minλ s.t. Z � J, (Zii = λ for all i), Z ∈ S⊥ (5.46)

ϑ̄′(G) = minλ s.t. Z � J, (Zii = λ for all i), Z + L ∈ S⊥, L ∈ N (5.47)

ϑ̄+(G) = minλ s.t. Z � J, (Zii = λ for all i), Z ∈ S⊥, Z ∈ N (5.48)
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The constraint B ∈ N that is added to (5.43) to yield (5.44) has the following justification.
Suppose that W ⊆ V (G) is a clique. Then the matrix

Bij =

{
1/ |W | if i, j ∈W
0 otherwise}

is a feasible solution to (5.43) with value |W |. So ω(G) ≤ ϑ̄(G). But B ∈ N , so this condition can
be added to the maximization program to yield a potentially smaller quantity ϑ̄′(G) that still upper
bounds ω(G).7 Similarly, if f : V (G)→ {1, . . . ,m} is a proper coloring of G then

Zij =

{
m if f(i) = f(j)

0 otherwise

is feasible for (5.46) with value χ(G), so ϑ̄(G) ≥ χ(G). Since this satisfies Z ∈ N , adding this
condition to the minimization program gives a quantity ϑ̄+(G) still lower bounding χ(G). We will
follow this sort of strategy to create analogues of ϑ̄′ and ϑ̄+ for non-commutative graphs.

The primal program for ϑ can be written [DSW13]

ϑ(S) = max 〈Φ|I ⊗ ρ+ T |Φ〉 0
s.t. ρ � 0,Trρ = 1,

I ⊗ ρ+ T � 0,

T ∈ S ⊗ L(A′), (5.49)

where A′ is an ancillary system of the same dimension as A and |Φ〉 =
∑
i |i〉A ⊗ |i〉A′ . With this

definition it is easy to see that ω(S) ≤ ϑ(S): since ω(S) is the classical communication capacity of the
distinguishability graph S, there are m = ω(S) vectors |ψ1〉 , . . . , |ψm〉 ∈ A such that |ψi〉 〈ψj | ∈ S
for i 6= j. Define

T =
1

m

∑

i 6=j
|ψi〉 〈ψj |A ⊗

∣∣ψi
〉 〈
ψj
∣∣
A′

and

ρ =
1

m

∑

i

|ψi〉 〈ψi|A′ , (5.50)

where a bar over a vector represents complex conjugation in the computational basis. This is
readily verified to be a feasible solution to (5.49) with value m. A tighter upper bound on ω(S) can
be obtained by adding constraints to (5.49). As long as (5.50) remains feasible under these new
constraints, the modified program will remain an upper bound on ω(S).

To this end, consider the “rotated transpose” linear superoperatorR : L(A)⊗L(A′)→ L(A)⊗L(A′)
with action

R (|i〉 〈j|A ⊗ |k〉 〈l|A′) = |i〉 〈k|A ⊗ |j〉 〈l|A′ (on standard basis states)

R (|ψ〉 〈φ|A ⊗ |χ〉 〈ξ|A′) = |ψ〉 〈χ|A ⊗
∣∣φ
〉
〈ξ|A′ . (in general)

Note that R is an involution (it is its own inverse). Define the double-dagger operation

X‡ = R(R(X)†).

We have R(IA ⊗ IA′) = |Φ〉 〈Φ|. The T from (5.50) transforms as

R(T ) =
1

m

∑

i 6=j
|ψi〉 〈ψi| ⊗

∣∣ψj
〉 〈
ψj
∣∣.

7 An even tighter constraint, requiring B to be completely positive, yields ω(G) exactly [dKP02].
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Since R(T ) is a separable operator, we may add this as an extra constraint in (5.49) to get a tighter
bound on ω(S).

In general, consider some closed convex cone C ⊆ L(A)⊗L(A′) and a trace-free non-commutative
graph S. We consider only cones over the real inner product space of Hermitian matrices. For
S ∈ L(A), we use the notation S := {M : M ∈ S} ⊆ L(A′), where a bar over an operator denotes
entrywise complex conjugate, with the conjugated operator moved into the primed space (as discussed
in section 5.6). Define the semidefinite program

ϑ
′
C(S) = max 〈Φ|I ⊗ ρ+ T |Φ〉

s.t. ρ � 0,Trρ = 1,

I ⊗ ρ+ T � 0,

T ∈ S ⊗ S,
R(T ) ∈ C. (5.51)

Note that T ∈ S⊗L(A′) and R(T ) ∈ C implies T ∈ S⊗S, since C contains only Hermitian operators.
We choose to explicitly state the condition T ∈ S ⊗ S in (5.51).

Since linear programming duality turns constraints into variables, the dual of this program is
similar to (5.11) but with an extra variable that runs over the dual cone C∗. In appendix 5.A we
show that strong duality holds, so that primal and dual have equal value. The dual program is

ϑ
′
C(S) = min ‖TrAY ‖

s.t. Y + (L+ L†) ∈ S⊥ ∗ S⊥ = (S ⊗ S)⊥,

R(L) +R(L)† ∈ C∗,
Y � |Φ〉 〈Φ|,
L ∈ L(A)⊗ L(A′). (5.52)

Recall that “∗” denotes the disjunctive product from definition 5.22. The point ρ = I/ dim(A), T = 0

is feasible for (5.51), giving ϑ
′
C(S) ≥ 1. In appendix 5.A we provide a feasible point for (5.52), giving

ϑ
′
C(S) <∞.
Denote by SEP the cone of separable operators in L(A)⊗L(A′). Since (5.50) satisfies R(T ) ∈ SEP,

it is feasible for (5.51) for ϑ
′
SEP. Therefore ω(S) ≤ ϑ′SEP(S). One can also show ωq(S)2 ≤ ϑ′SEP(S)

by similar means, but we will eventually obtain this result by showing ϑ
′
SEP to be a homomorphism

monotone in the same sense that ϑ is.
From a computational perspective ϑ

′
SEP(S) is not the most convenient because there is no

efficient way to determine whether an operator is in SEP. Fortunately there are closed convex cones
containing SEP that are efficiently optimized over and that give good bounds on ω(S) and ωq(S).
Namely, consider S+, the cone of positive semidefinite matrices, PPT, the cone of matrices with
positive semidefinite partial transpose, or even S+ ∩ PPT. Note that S+ and PPT are self-dual
and the dual of S+ ∩ PPT is S+ + PPT. The dual of SEP is the set of entanglement witnesses:
SEP∗ = {W : 〈W,M〉 ≥ 0 for all M ∈ SEP}. We have

ω(S) ≤ ϑ′SEP(S) ≤ ϑ′S+∩PPT(S) ≤ ϑ′S+(S) ≤ ϑ(S). (5.53)

This sequence of refinements is reminiscent of the approximations to the copositive cone that yield the
Lovász and Schrijver numbers for classical graphs [dKP02,BFL10]. In fact the middle three values in
the above chain of inequalities collapse to Schrijver’s number when S derives from a classical graph.

Theorem 5.27. Let G be a classical loop-free graph and S = span{|i〉 〈j| : i ∼ j}. Then for any
closed convex cone C satisfying SEP ⊆ C ⊆ SEP∗, it holds that ϑ

′
C(S) = ϑ̄′(G).
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Proof. Define the isometry V =
∑
i |ii〉 〈i|. Let T and ρ be an optimal solution for (5.51) for ϑ

′
SEP∗(S).

We will show that B = V †(I ⊗ ρ+ T )V is feasible for (5.44). This matrix has coefficients

Bij = ρiiδij + 〈ii|T |jj〉
= ρiiδij + 〈ij|R(T )|ij〉 .

Since ρii ≥ 0, R(T ) ∈ SEP∗, and |ij〉 〈ij| ∈ SEP, it holds that Bij ≥ 0 for all i, j. So B ∈ N . We
have I ⊗ ρ+ T � 0 =⇒ B � 0. Since T ∈ S ⊗ S we have 〈ii|T |jj〉 = 0 when i 6∼ j. In particular,
Bii = ρii and Bij = 0 when i 6∼ j, i 6= j. Since Trρ = 1, also TrB = 1. So B is feasible for (5.44). Its
value is

〈B, J〉 =
∑

ij

Bij =
∑

ij

〈ii|I ⊗ ρ+ T |jj〉 = 〈Φ|I ⊗ ρ+ T |Φ〉 = ϑ
′
SEP∗(S).

Therefore ϑ̄′(G) ≥ ϑ′SEP∗(S).
Now let B be an optimal solution for (5.44). Decompose this into diagonal and off-diagonal

components: B = ρ + T ′. Define T = V T ′V †. We will show these to be feasible for (5.51) for
ϑ
′
SEP(S). For any vector |ψ〉 ∈ A⊗A′ we have

〈ψ|I ⊗ ρ+ T |ψ〉 =
∑

ij

∣∣ψ2
ij

∣∣ ρjj +
∑

i6=j
ψ∗iiT

′
ijψjj

=
∑

i6=j

∣∣ψ2
ij

∣∣ ρjj +
∑

ij

ψ∗iiBijψjj ≥ 0,

where the last inequality follows from ρjj ≥ 0 and B � 0. Therefore I ⊗ ρ+ T � 0. We have

R(T ) =
∑

ij

T ′ijR(|ii〉 〈jj|)

=
∑

ij

T ′ij |ij〉 〈ij| ∈ SEP,

where the last relation requires T ′ij ≥ 0. Clearly ρ � 0 and Trρ = TrB = 1. For i 6∼ j we have
T ′ij = 0 =⇒ (〈i| ⊗ I)T (|j〉 ⊗ I) = 0, giving T ∈ S ⊗ L(A′). Similarly, T ∈ L(A) ⊗ S. So in fact
T ∈ (S ⊗ L(A′)) ∩ (L(A)⊗ S) = S ⊗ S. Therefore ρ and T are feasible for (5.51) for ϑ

′
SEP(S). This

solution has value

〈Φ|I ⊗ ρ+ T |Φ〉 =
∑

ij

〈ii|I ⊗ ρ+ T |jj〉

=
∑

i

ρii +
∑

ij

T ′ij = 〈B, J〉 = ϑ̄′(G),

giving ϑ
′
SEP(S) ≥ ϑ̄′(G).

Clearly SEP ⊆ C ⊆ SEP∗ =⇒ ϑ
′
SEP(S) ≤ ϑ′C(S) ≤ ϑ′SEP∗(S) since maximization programs have

nondecreasing value as constraints are loosened. Combining this with the above two inequalities
gives the desired equality result.

A generalization of Szegedy’s number to non-commutative graphs follows similarly, now adding
extra constraints to the dual program (5.11). Extra constraints on the dual become extra variables
in the primal. For a closed convex cone C of operators in L(A) ⊗ L(A′) and for a trace-free
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non-commutative graph S, the primal and dual take the form

ϑ
+

C (S) = max 〈Φ|I ⊗ ρ+ T |Φ〉
s.t. ρ � 0,Trρ = 1,

I ⊗ ρ+ T � 0,

T + (L+ L†) ∈ S ∗ S = (S⊥ ⊗ S⊥)⊥,

R(L) +R(L)† ∈ C∗,
L ∈ L(A)⊗ L(A′), (5.54)

ϑ
+

C (S) = min ‖TrAY ‖
s.t. Y ∈ S⊥ ⊗ S⊥,

R(Y ) ∈ C,
Y � |Φ〉 〈Φ| . (5.55)

That these two programs take the same value is shown in appendix 5.A. The point ρ = I/ dim(A),
T = 0, L = 0 is feasible for (5.54), giving ϑ

+

C (S) ≥ 1. Although (5.52) is always feasible, in some
cases (5.55) is not feasible so ϑ

+

C (S) can be infinite; see lemma 5.30 for an example.
Similar to (5.53), we have the chain of inequalities

ϑ(S) ≤ ϑ+

S+(S) ≤ ϑ+

S+∩PPT(S) ≤ ϑ+

SEP(S) ≤ χ(S). (5.56)

The last inequality will be proved in corollary 5.31, and the others follow from the fact that (5.55) has
nondecreasing value as constraints are tightened. Note, however, that the last two values can be ∞
and, unlike ϑ(S), don’t provide a bound on χq(S)2. As was the case with our Schrijver generalization,
this generalized Szegedy quantity matches the classical value when S derives from a classical graph.

Theorem 5.28. Let G be a classical loop-free graph and S = span{|i〉 〈j| : i ∼ j}. Then for any
closed convex cone C satisfying SEP ⊆ C ⊆ SEP∗, it holds that ϑ

+

C (S) = ϑ̄+(G).

Proof. Define the isometry V =
∑
i |ii〉 〈i|. Let Z be an optimal solution for (5.48). Define Y = V ZV †.

We have Z � J =⇒ Y � V JV † = |Φ〉 〈Φ|. Since Z ∈ S⊥ we have Y =
∑
i 6∼j Zij |ii〉 〈jj|; this is an

element of S⊥⊗S⊥. Z being entrywise nonnegative ensures that R(Y ) =
∑
ij Zij |i〉 〈i|⊗|j〉 〈j| ∈ SEP.

So Y is feasible for (5.55) for ϑ
+

SEP(S). Its value is ‖TrAY ‖ = ‖∑i Zii|i〉 〈i|‖ = ϑ̄+(G). Therefore
ϑ

+

SEP(S) ≤ ϑ̄+(G).
Now let B, L′ be an optimal solution for (5.45) for ϑ̄+(G). Without loss of generality, assume

that L′ is Hermitian (any feasible solution for (5.45) can be averaged with its adjoint). Also, assume
that L′ vanishes on the diagonal since zeroing the diagonal entries of L′ doesn’t affect feasibility
for (5.45). Decompose B into diagonal and off-diagonal components: B = ρ+T ′. Define T = V T ′V †

and L = V L′V †/2. We will show this to be feasible for (5.54) for ϑ
+

SEP∗(S). By the arguments of
theorem 5.27, ρ � 0, Trρ = 1, and I⊗ρ+T � 0. For i 6∼ j we have (T ′+L′)ij = 0 since B+L′ ∈ S+S0

and T ′ + L′ vanishes on the diagonal. So T + L + L† = V (T ′ + L′)V † =
∑
i∼j(T

′ + L′)ij |ii〉 〈jj|,
which is an element of S ⊗ S. We have

R(L) =
∑

ij

1

2
L′ijR(|ii〉 〈jj|)

=
∑

ij

1

2
L′ij |ij〉 〈ij| ∈ SEP,
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where the last line relies on L′ij ≥ 0. Similarly R(L)† ∈ SEP; therefore R(L)+R(L)† ∈ SEP = SEP∗∗.

So ρ, T , and L are feasible for (5.54) for ϑ
+

SEP∗(S). By the arguments of theorem 5.27, the value of
this solution is ϑ̄+(G); therefore ϑ

+

SEP∗(S) ≥ ϑ̄+(G).
Clearly SEP ⊆ C ⊆ SEP∗ =⇒ ϑ

+

SEP(S) ≥ ϑ+

C (S) ≥ ϑ+

SEP∗(S) since maximization programs have
nonincreasing values as constraints are tightened. Combining this with the above two inequalities
gives the desired equality result.

Theorem 5.29. Suppose a closed convex cone C is closed under the action of maps of the form
E ⊗ E where E is a completely positive trace preserving map and E is the entrywise complex conjugate
of E.8 In particular, the cones {SEP,S+,PPT,S+ ∩ PPT, SEP∗} satisfy this requirement. Then ϑ

′
C

and ϑ
+

C are homomorphism monotones in the sense that for trace-free non-commutative graphs S
and T we have

S → T =⇒ ϑ
′
C(S) ≤ ϑ′C(T ), (5.57)

ϑ
+

C (S) ≤ ϑ+

C (T ). (5.58)

Proof. The proof is similar to that of theorem 5.19, so we only describe the needed modifications. To
prove (5.57), let Y ′, L′ ⊆ L(B)⊗ L(B′) be a feasible solution for (5.52) for ϑ

′
C(T ). As was done in

theorem 5.19, define Y ⊆ L(A)⊗L(A′) as Y =
∑
ij(Ei⊗Ei)†Y ′(Ej⊗Ej) where the Kraus operators

{Ei} are a homomorphism S → T . Similarly, define L =
∑
ij(Ei ⊗ Ei)†L′(Ej ⊗ Ej). We will show

this to be a feasible solution for (5.52) for ϑ
′
C(S) with value at most ϑ

′
C(T ). The arguments in the

proof of theorem 5.19 apply directly to show Y � |Φ〉 〈Φ| and ‖TrAY ‖ ≤ ‖TrBY ′‖.
Since Y ′, L′ are feasible for (5.52) for ϑ

′
C(T ) we have that Y ′+L′+L′† ∈ T⊥⊗L(B′)+L(B)⊗T⊥,

giving

Y + L+ L† =
∑

ij

(Ei ⊗ Ei)†(Y ′ + L′ + L′†)(Ej ⊗ Ej)

∈ E†T⊥E ⊗ E†L(B′)E + E†L(B)E ⊗ E†T⊥E
⊆ S⊥ ⊗ L(A′) + L(A)⊗ S⊥.

All that remains is to show R(L) +R(L)† ∈ C∗. We have

R(L) =
∑

ij

R((Ei ⊗ Ei)†L′(Ej ⊗ Ej))

=
∑

ij

(Ei ⊗ Ej)†R(L′)(Ei ⊗ Ej)

= (Ê∗ ⊗ E∗)(R(L′)). (5.59)

Since completely positive maps commute with the taking of adjoints we also have R(L)† = (Ê∗ ⊗
E∗)(R(L′)†). Consequently, R(L) +R(L)† = (Ê∗ ⊗ E∗)(R(L′) +R(L′)†). But R(L′) +R(L′)† ∈ C
and this cone is assumed to be closed under such product maps, so R(L) +R(L)† ∈ C.

To prove (5.58), let Y ′ ⊆ L(B) ⊗ L(B′) be a feasible solution for (5.55) for ϑ
+

C (T ) and define
Y as in the previous paragraph. We will show this to be a feasible solution for (5.55) for ϑ

′
C(S)

with value at most ϑ
′
C(T ). Again the arguments in the proof of theorem 5.19 apply directly to show

Y � |Φ〉 〈Φ| and ‖TrAY ‖ ≤ ‖TrBY ′‖. A straightforward modification of (5.27) yields Y ∈ S⊥ ⊗ S⊥.
8 Note that (E ⊗ E)(X) can be on a different Hilbert space than X. So, technically, one must consider a collection

of cones, one for each Hilbert space. For example, SEP is such a collection.
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All that remains is to show that R(Y ) ∈ C. Similar to (5.59), we have R(Y ) = (Ê∗ ⊗ E∗)(R(Y ′)).
But R(Y ′) ∈ C and this cone is assumed to be closed under such product maps, so R(Y )† ∈ C.

Lemma 5.30. Let C be a closed convex cone. Then,

1. ϑ
′
C(Kn) = ϑ

+

C (Kn) = n if C ⊇ SEP

2. ϑ
′
C(Qn) = n2 if C ⊇ SEP

3. ϑ
+

C (Qn) = n2 if |Φ〉 〈Φ| ∈ C (e.g. if C ⊇ S+)

4. ϑ
+

C (Qn) =∞ if |Φ〉 〈Φ| 6∈ C (e.g. if C ⊆ PPT)

Proof. For C ⊇ SEP we have ϑ
′
SEP(Kn) ≤ ϑ

′
C(Kn) ≤ ϑ(Kn) ≤ ϑ

+

C (Kn) ≤ ϑ
+

SEP(Kn). By theo-
rems 5.27 and 5.28 ϑ

′
SEP(Kn) = ϑ

+

SEP(Kn) = n, since ϑ̄′(Kn) = ϑ̄+(Kn) = n.
A feasible solution for (5.51) for ϑ

′
SEP(Qn) is given by ρ = I/n and T = |Φ〉 〈Φ| − I ⊗ I/n.

The operator R(T ) = I ⊗ I − |Φ〉 〈Φ|/n is separable [GB02]. The value of this solution is n2, so
ϑ
′
SEP(Qn) ≥ n2. For C ⊇ SEP we have ϑ

′
SEP(Qn) ≤ ϑ′C(Qn) ≤ ϑ(Qn) = n2, so in fact ϑ

′
C(Qn) = n2.

Suppose |Φ〉 〈Φ| ∈ C. Then R(I ⊗ I) ∈ C so a feasible solution for (5.55) for ϑ
+

C (Qn) with value
n2 is given by Y = nI ⊗ I; therefore ϑ+

C (Qn) ≤ n2. But also ϑ
+

C (Qn) ≥ ϑ(Qn) = n2, so in fact
ϑ

+

C (Qn) = n2.
Suppose |Φ〉 〈Φ| 6∈ C. Any feasible solution for (5.55) for ϑ

+

C (Qn) requires Y ∈ Q⊥n ⊗ Q
⊥
n =

span{I ⊗ I}. In other words, Y = cI ⊗ I for some c > 0. But then R(Y ) = c|Φ〉 〈Φ|. Since
|Φ〉 〈Φ| 6∈ C, there can be no feasible solution. So ϑ

+

C (Qn) =∞.

Corollary 5.31. Let S be a trace-free non-commutative graph. For C ∈ {SEP,S+,PPT,S+ ∩
PPT, SEP∗}, it holds that ω(S) ≤ ϑ

′
C(S) ≤ ϑ(S) ≤ ϑ

+

C (S) ≤ χ(S) and [ωq(S)]2 ≤ ϑ
′
C(S). For

C ∈ {S+, SEP∗}, ϑ+

C (S) ≤ [χq(S)]2.

Proof. The corollary follows from application of theorem 5.29 to the definition of ω(S), ωq(S), χ(S),
and χq(S), and using the values from lemma 5.30. Note that for C ⊆ PPT, in particular, the bound
ϑ

+

C (S) ≤ [χq(S)]2 does not hold since χq(Qn) = n but ϑ
+

C (Qn) =∞.

Having developed the basic theory of Schrijver and Szegedy numbers for non-commutative graphs,
we turn now to commentary and applications. It is interesting to note that a gap between ϑ̄′, ϑ̄,
and ϑ̄+ for classical graphs is somewhat difficult to find and the gaps are often small. The smallest
classical graph displaying a gap between any of these three quantities has 8 vertices.9 The gap
is much more pronounced for non-commutative graphs, showing up already for graphs in L(C2).
Indeed, by lemma 5.30, ϑ(Q2) = 4 but ϑ

+

PPT(Q2) =∞. Numerical results on 10000 random graphs
S ∈ L(C3) with dim(S) = 4 yielded ϑ

′
PPT(S) = 1 for all test cases and ϑ

+

PPT(S) =∞ for 93% of test
cases (with the solver failing to converge in one case).

An extreme gap between ϑ and ϑ
′
PPT appears for S = C∆ with ∆ = diag{d− 1,−1, . . . ,−1} ⊆

L(Cd). In this case, ϑ(S) = d [DSW10], but ϑ
′
PPT(S) = 1. This can be seen as follows. For ϑ(S),

the feasible solution T = ∆⊗ |0〉 〈0|, ρ = |0〉 〈0| allows ϑ(S) = d. For ϑ
′
PPT(S) it is required first of

all that T ∈ S ⊗ S. The only feasible solutions are then of the form T = c∆⊗∆ for some constant c.
But R(c∆ ⊗∆) ∈ PPT requires c = 0. Therefore the only feasible solution for ϑ

′
PPT(S) is T = 0,

giving ϑ
′
PPT(S) = 1. So in this case ϑ

′
PPT(S) = 1 exactly matches the clique number ω(S), since

1 ≤ ω(S) ≤ ϑ′PPT(S) = 1.
9 Verified numerically. The graph with graph6 code GRddY{ has ϑ̄′ = 3.236, ϑ̄ = 3.302, ϑ̄+ = 3.338.
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Note, however, that the entanglement assisted clique number of S = C∆ is ω∗(S) = 2 [DSW10].
So, in this case, ϑ

′
PPT(S) is not an upper bound on one-shot entanglement assisted capacity. This is

a bit of a surprise, since for classical graphs and for any cone SEP ⊆ C ⊆ SEP∗ our ϑ
′
C and ϑ

+

C reduce
to ϑ̄′ and ϑ̄+ (by theorems 5.27 and 5.28), and these are known to be monotone under entanglement
assisted homomorphisms [CMR+13]. In particular, for classical graphs, ϑ̄′(G) upper bounds one-shot
entanglement assisted capacity.

The failure of ϑ
′
PPT(S) to bound entanglement assisted one-shot capacity ω∗ can be understood

as follows. This capacity is the largest n such that Kn
∗→ S. By definition 5.15 this means there

is some Λ � 0 such that Kn ⊗ Λ → S. By theorem 5.19 we have ϑ(Kn ⊗ Λ) ≤ ϑ(S) and by
lemma 5.18 ϑ(Kn ⊗ Λ) = n, so n ≤ ϑ(S). Thus ω∗(S) ≤ ϑ(S). It is this last step that breaks down
for ϑ

′
PPT. By theorem 5.29 we have ϑ

′
PPT(Kn ⊗ Λ) ≤ ϑ′PPT(S). But, as we will show in lemma 5.32,

ϑ
′
PPT(Kn ⊗ Λ) = 1, so this is a trivial bound that says nothing about n.
Although C = PPT is therefore unsuitable for bounding entanglement assisted clique number, all

is not lost. In lemma 5.33 we will show ϑ
′
S+(S ⊗ I) = ϑ

′
S+(S). So ϑ

′
S+ indeed provides a bound on

entanglement assisted one-shot capacity, when sender and receiver share a maximally entangled state
(i.e. Λ = I). For general Λ this does not hold: ϑ

′
S+(S ⊗ Λ) can be smaller than ϑ

′
S+(S).

Lemma 5.32. Let S be a trace-free non-commutative graph and Λ � 0 with rank(Λ) > 1. Then
ϑ
′
PPT(S ⊗ Λ) = 1.

Proof. We will show that the only possible feasible solutions for (5.51) are those with T = 0. Indeed,
suppose that T 6= 0. It is required that T ∈ (S⊗Λ)⊗(S⊗Λ), so T must be of the form T = T ′⊗Λ⊗Λ
where T ′ ∈ S ⊗ S. Then R(T ) = R(T ′) ⊗R(Λ ⊗ Λ) ∈ PPT requires that R(Λ ⊗ Λ) ∈ PPT. But
R(Λ ⊗ Λ) = |ψ〉 〈ψ|, where |ψ〉 =

∑
ij Λij |ij〉, is an entangled state since rank(Λ) > 1. Entangled

pure states are not in PPT.

Lemma 5.33. Let S be a trace-free non-commutative graph and let Λ � 0, Λ 6= 0. Then

ϑ
′
S+(S)− 1

ϑ
′
S+(S ⊗ Λ)− 1

=
‖Λ‖Tr(Λ)

Tr(Λ2)
. (5.60)

In particular, ϑ
′
S+(S ⊗ I) = ϑ

′
S+(S).

Proof. Work in a basis in which Λ is diagonal: Λ = diag(λ1, . . . , λn) with ‖Λ‖ = λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0.

(≥): Say S ⊆ L(A) and Λ ∈ L(B). Let T ∈ L(A⊗B⊗A′⊗B′) and ρ ∈ L(A′⊗B′) be an optimal
solution for (5.51) for ϑ

′
S+(S ⊗ Λ). Since T ∈ (S ⊗ Λ)⊗ (S ⊗ Λ) it must be that T = T ′ ⊗ (Λ⊗ Λ)

for some T ′ ∈ S ⊗ S. So T is block diagonal:

T =
∑

ij

λiλjT
′ ⊗ |i〉 〈i|B ⊗ |j〉 〈j|B′ .

Without loss of generality ρ is also block diagonal: ρ =
∑
j ρj ⊗ |j〉 〈j|B′ . This can be assumed

since the off diagonal components of ρ can be zeroed out without affecting its trace or the relation
IAB ⊗ ρ+ T � 0. Since IAB ⊗ ρ+ T is block diagonal and positive semidefinite, each block must be
positive semidefinite: IA ⊗ ρj + λiλjT

′ � 0 or, equivalently,

IA ⊗
ρj
λiλj

+ T ′ � 0.

Let σ be the member of {ρj/λ1λj}j with the least trace. We have

Tr(Λ)Tr(σ) =
∑

j

λjTr(σ) ≤
∑

j

Tr(ρj)/λ1 = Tr(ρ)/ ‖Λ‖ .
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But Tr(ρ) = 1 so c := Tr(σ)−1 ≥ Tr(Λ) ‖Λ‖. We have Tr(cσ) = 1 and IA ⊗ σ + T ′ � 0 =⇒
IA ⊗ cσ + cT ′ � 0. Also

R(T ) � 0 =⇒ R(T ′)⊗R(
∑

ij

λiλj |i〉 〈i|B ⊗ |j〉 〈j|B′) � 0

=⇒ R(T ′)⊗ (
∑

i

λi |ii〉BB′)(
∑

j

λj 〈jj|BB′) � 0

=⇒ R(T ′) � 0. (5.61)

So cσ and cT ′ are feasible for (5.51) for ϑ
′
S+(S) with value

〈ΦA|IA ⊗ cσ + cT ′|ΦA〉 = Tr(cσ) + c 〈ΦA|T ′|ΦA〉
= 1 +

c

Tr(Λ2)
〈ΦA|T ′|ΦA〉

〈
ΦB
∣∣Λ⊗ Λ

∣∣ΦB
〉

= 1 +
c

Tr(Λ2)
〈ΦAB |T |ΦAB〉

≥ 1 +
Tr(Λ) ‖Λ‖
Tr(Λ2)

(ϑ
′
S+(S ⊗ Λ)− 1). (5.62)

Therefore ϑ
′
S+(S) ≥ (5.62) and the left side of (5.60) is at least as great as the right side.

(≤): Let ρ′ and T ′ be an optimal solution for (5.51) for ϑ
′
S+(S). Define ρ = ρ′ ⊗ Λ/Tr(Λ) and

T = T ′ ⊗ Λ⊗ Λ/(‖Λ‖Tr(Λ)). Then Tr(ρ) = 1, T ∈ (S ⊗ Λ)⊗ (S ⊗ Λ), and

IAB ⊗ ρ+ T =
1

Tr(Λ)

(
IA ⊗ ρ′ ⊗ IB + T ′ ⊗ Λ

‖Λ‖

)
⊗ Λ

� 1

Tr(Λ)

(
IA ⊗ ρ′ ⊗

Λ

‖Λ‖ + T ′ ⊗ Λ

‖Λ‖

)
⊗ Λ

=
1

Tr(Λ) ‖Λ‖ (IA ⊗ ρ′ + T ′)⊗ Λ⊗ Λ � 0.

And R(T ) � 0 by following the logic of (5.61) in reverse. So ρ and T are feasible for (5.51) for
ϑ
′
S+(S ⊗ Λ). The objective value is

〈ΦAB |IAB ⊗ ρ+ T |ΦAB〉 = 1 + 〈ΦAB |T |ΦAB〉
= 1 + 〈ΦA|T ′|ΦA〉

〈
ΦB
∣∣Λ⊗ Λ

∣∣ΦB
〉
/(‖Λ‖Tr(Λ))

= 1 + (ϑ
′
S+(S)− 1)

Tr(Λ2)

‖Λ‖Tr(Λ)
. (5.63)

So ϑ
′
S+(S ⊗ Λ) ≥ (5.63) and the left side of (5.60) is no greater than the right side.

An extreme example of the difference between unassisted capacity and entanglement assisted
capacity is given in theorem 3 of [Dua09]: a channel is defined having distinguishability graph
S = Qn ⊗ I2, where I2 is the 2× 2 identity operator. In [Dua09] it is shown that this channel has
no unassisted zero-error classical capacity (even with many uses of the channel) but has one-shot
entanglement assisted quantum capacity log n. In other words, ωq∗(S) = n. Our techniques show
this result to be “obvious in retrospect”. Indeed, trivially Qn

∗→ S since Qn ⊗ I2 → Qn ⊗ I2. So
ωq∗(S) ≥ n; the channel has one-shot entanglement assisted capacity of at least log n qubits. And
by lemma 5.32, ϑ

′
PPT(S) = 1 so ω(S) = 1; the channel has no one-shot capacity in the absence

of entanglement. Unfortunately we cannot use these techniques to bound the asymptotic capacity
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limm→∞ 1
m logω(S∗m) since ϑ

′
PPT is not in general multiplicative under powers S∗m (even for classical

graphs [CMR+13]). We conjecture, however, that ϑ
′
C (for certain cones C) is multiplicative when

ϑ
′
C(S) = 1.
Inspired by this S = Qn⊗ I2 example, we construct a channel that has no one-shot capacity when

assisted by a maximally entangled state of arbitrary dimension, but does have one-shot capacity
when assisted by a non-maximally entangled state. To our knowledge this is a new result. We note
that the possibility of such behavior for a classical channel is still an open problem [RM12,CMR+13].
This example nicely illustrates the utility of these semidefinite programming bounds which, at least
for small dimensions, are very computationally tractable. The following example was found and
verified numerically before lemma 5.33 was discovered; the latter was inspired by the former.

Theorem 5.34. There is a channel that can transmit an error-free quantum state of dimension n
(i.e. log n qubits) using entanglement between sender and receiver, but that cannot transmit even a
single error-free classical bit if the sender and receiver only share a maximally entangled state.

Proof. Let T = Qn ⊗ Λ where Λ satisfies c := ‖Λ‖Tr(Λ)
Tr(Λ2) > n2 − 1. For instance, take

Λ = diag(1, α, . . . , α) ∈ L(Cm) where α = (
√
m − 1)/(m − 1). This maximizes c for a given

m, achieving c = (m− 1)/2(
√
m− 1). So if n = 2 we can take m = 26 to get c > 3.

By lemma 2 of [Dua09], T is the distinguishability graph of some quantum channel. Qn ⊗ Λ→ T
(there is always a homomorphism from a graph to itself), so a quantum state of dimension n can
be sent using an entanglement resource |λ〉 with reduced density operator Λ. In fact, the encoding
is trivial: Alice simply puts her state to be transmitted, along with her half of the entanglement
resource, directly into the channel.

On the other hand, by lemma 5.33, ϑ
′
S+(K2 ⊗ I) = ϑ

′
S+(K2) = 2 (with I being identity on a

space of arbitrary finite dimension) whereas ϑ
′
S+(T ) = 1 + (ϑ

′
S+(Qn)− 1)/c = 1 + (n2 − 1)/c < 2.

Since ϑ
′
S+ is a homomorphism monotone, K2 ⊗ I 6→ T ; it is not possible to transmit an error-free

classical bit using a maximally entangled resource.

As mentioned above, we conjecture that ϑ
′
C (for certain cones C) is multiplicative when ϑ

′
C(S) = 1.

If this were the case, then ϑ
′
C(S) = 1 would be enough to guarantee that a channel has no zero-error

asymptotic capacity without entanglement assistance. We might as well focus on C = SEP since
this is the smallest of the cones we have considered, and so gives the strongest bound. When is
ϑ
′
SEP(S) = 1? Below we present a characterization, but leave the interpretation open.

Theorem 5.35. Let S be a trace-free non-commutative graph. ϑ
′
SEP(S) = 1 iff there is an M ∈

(S ⊗ S)⊥ such that R(M) − I ∈ SEP∗ (i.e. is an entanglement witness). Such channels have no
unassisted one-shot capacity.

Proof. ( =⇒ ): Let S ⊆ L(A) be a trace-free non-commutative graph with ϑ
′
C(S) = 1 Let Y, L be an

optimal solution for (5.52) for ϑ
′
C(S). We have

‖TrAY ‖ = ϑ
′
C(S) = 1 =⇒ TrAY � I = TrA(|Φ〉 〈Φ|)

=⇒ TrA(Y − |Φ〉 〈Φ|) � 0

=⇒ Tr(Y − |Φ〉 〈Φ|) ≤ 0

But Y − |Φ〉 〈Φ| � 0 so in fact Y = |Φ〉 〈Φ|.
Notice that Y = |Φ〉 〈Φ| is symmetric under † and ‡ (i.e. Y = Y † = Y ‡). The subspace (S ⊗ S)⊥

is also symmetric under these operations, as is the cone SEP∗. So we can assume without loss
of generality that L is invariant under † and ‡. Indeed, any general L could be replaced with
(L + L† + L‡ + L†‡)/4. Then Y + 2L ∈ (S ⊗ S)⊥ and R(L) ∈ SEP∗. Define M = Y + 2L. Then
M ∈ (S ⊗ S)⊥ and R(M)− I = R(|Φ〉 〈Φ|) + 2R(L)− I = I + 2R(L)− I = 2R(L) ∈ SEP∗.
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( ⇐= ): Suppose M ∈ (S ⊗ S)⊥ and R(M) − I ∈ SEP∗. By the same logic as the first
part of the proof, we can assume that M is invariant under † and ‡, so that M = M† and
R(M) = R(M)†. Define Y = |Φ〉 〈Φ| and L = (M − Y )/2. Then Y + L+ L† = M ∈ (S ⊗ S)⊥ and
R(L) +R(L)† = R(M) − R(Y ) = R(M) − I ∈ SEP∗, so this is a feasible solution for (5.52) for
ϑ
′
C(S). Its value is ‖TrAY ‖ = ‖IA′‖ = 1, so ϑ

′
C(S) ≤ 1. But any feasible solution has Y ≥ |Φ〉 〈Φ|

and so must have value at least ‖TrA{|Φ〉 〈Φ|}‖ = 1. Therefore also ϑ
′
C(S) ≥ 1.

We now turn our attention to ϑ
+

C . Whereas ϑ
′
C(S) = 1, for any cone C ⊇ SEP, certifies that a

channel has no one-shot capacity (without entanglement assistance), ϑ
+

C (S) = ∞ certifies that a
source cannot be transmitted using local operations and one-way classical communication (LOCC-1).
This is because

C ⊇ SEP =⇒ ϑ
+

C (S) ≤ ϑ+

SEP(S) ≤ χ(S).

So if ϑ
+

C (S) =∞ then χ(S) =∞ and no amount of classical communication from Alice to Bob can
transmit the source.

As an example, [Nat13] provides a set of three maximally entangled states that are LOCC-1
indistinguishable:

|ψ0〉 =
1

2
(|00〉+ |11〉)A1B1 ⊗ (|00〉+ |11〉)A2B2

|ψ1〉 =
1

2
(ω |00〉+ |11〉)A1B1 ⊗ (|01〉+ |10〉)A2B2

|ψ2〉 =
1

2
(γ |00〉+ |11〉)A1B1 ⊗ (|00〉 − |11〉)A2B2

where ω and γ are phases in general position. The characteristic graph for this source is span{I, Z}⊗
Q2. The quantity ϑ

+

PPT(S) is efficiently computable numerically (at least for spaces this small), and
immediately provides a certificate that these states are LOCC-1 indistinguishable, with no manual
computation needed. In the case of this example there is in fact an alternate proof of this result.
If the three states defined above were LOCC-1 distinguishable then there would be an n such that
span{I, Z} ⊗Q2 → Kn. But then

Q2 → diag(1, 0)⊗Q2 → span{I, Z} ⊗Q2 → Kn

where the second follows from diag(1, 0)⊗Q2 ⊆ span{I, Z}⊗Q2. By transitivity of homomorphisms
this yields Q2 → Kn. But a qubit cannot be transmitted through a classical channel so Q2 6→ Kn.

5.9 Conclusion
We have defined and investigated the problem of quantum zero-error source-channel coding. This
broad class of problems includes dense coding, teleportation, channel capacity, and one-way LOCC
state measurement. Whereas classical zero-error source-channel coding relies on graphs, the quantum
version relies on non-commutative graphs. Central to this theory is a generalization of the notion of
graph homomorphism to non-commutative graphs.

For classical graphs, it is known that the Lovász number is monotone under homomorphisms (and
in fact even entanglement assisted homomorphisms). The Lovász number has been generalized to
non-commutative graphs by [DSW13]; we showed this quantity to be monotone under entanglement
assisted homomorphisms on non-commutative graphs.

We investigated the problem of sending many parallel source instances using many parallel
channels and found that the Lovász number provides a bound on the cost rate, but only if the source
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satisfies a particular condition. Classical sources, as well as sources that can produce a maximally
entangled state, both satisfy this condition.

We defined Schrijver and Szegedy quantities for non-commutative graphs. These are monotone
under non-commutative graph homomorphisms, but not entanglement assisted homomorphisms. In
fact, we derived a sequence of such quantities that are all equal to the traditional Schrijver and Szegedy
quantities for classical graphs but can take different values on general non-commutative graphs. These
results were used to investigate some known examples from the literature regarding entanglement
assisted communication over a noisy channel and one-way LOCC measurements. Strangely, one
of the Schrijver variants, ϑ

′
S+ , scores non-maximally entangled states as more valuable a resource

than maximally entangled states (which are not even visible to ϑ
′
S+). Exploiting this oddity we

constructed a channel that can transmit several zero-error qubits if sender and receiver can share
an arbitrary entangled state, but cannot transmit even a single classical bit if only a maximally
entangled resource is allowed. It is still an open question whether such behavior is possible for a
classical channel.

Most of all, and more importantly than any specific bounds provided for the quantum source-
channel coding problem, we have furthered the program of non-commutative graph theory set forth
in [DSW13]. It is a curiosity that a field as discrete as graph theory can be “quantized” by replacing
sets with Hilbert spaces and binary relations with operator subspaces. Non-commutative graphs offer
the promise that some of the wealth of graph theory may be imported into the theory of operator
subspaces. But actually this promise is more of a tease, as even the most basic facts from graph
theory lead only to (interesting!) open questions in the theory of non-commutative graphs. We close
by outlining some these questions.

• For classical graphs, χ(G)ω(G) ≥ |V (G)|. Does this hold also for non-commutative graphs, with
an appropriate definition of graph complement? We propose the complement (for trace-free
graphs) Sc = (S + CI)⊥, and conjecture that χ(S)ω(Sc) ≥ n where S ⊆ L(Cn). Note that
χ(S) and ω(Sc) are only defined when S and Sc are both trace free. Similarly, does it hold
that ϑ(S)ϑ(Sc) ≥ n?

• What is the analogue of vertex transitive for non-commutative graphs, and what are the
properties of these graphs? We propose to define the automorphism group as Aut(S) =
{U unitary : USU† = S} and to call such a group vertex transitive if the only operators
satisfying UρU† = ρ for all U ∈ Aut(S) are those proportional to identity.

• A Hamiltonian path for a trace-free non-commutative graph S ∈ L(Cn) can be taken to be a set
of nonzero vectors such that |ψi〉 〈ψi+1| ∈ S for i ∈ {1, . . . , n− 1}. Does the Lovász conjecture
generalize? That is to say, does every connected trace-free vertex transitive non-commutative
graph have a Hamiltonian path?

• Let S be a non-commutative graph associated with the classical graph G. We saw that χ(G)
is the smallest n such that S → Kn and orthogonal rank ξ(G) is the smallest n such that
S → Qn. Projective rank ξf [RM12] is to ξ as fractional chromatic number χf is to χ. Since
χf (G) = min{p/q : G → Kp:q} where Kp:q is the Kneser graph [GR01], is it the case that
ξf (G) = min{p/q : S → K ′p:q} for some class of non-commutative graphs K ′p:q?

• How is the distinguishability graph of a channel related to that of the complementary channel?
The same question can be asked for the source: swapping Alice and Bob’s inputs defines a
complementary source.

• For classical graphs, ϑ̄′ and ϑ̄+ are monotone under entanglement assisted homomorphisms.
For non-commutative graphs this does not always hold. Is there some insight here? Or does
this mean there is some better generalization of ϑ̄′ and ϑ̄+?
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• Is it the case that ϑ
′
C(S) = 1 implies ϑ

′
C(S
∗n) = 1, for some suitable choice of C? If so, ϑ

′
C(S) = 1

would certify that a channel had no asymptotic zero-error capacity.

• Any trace-free non-commutative graph is both the characteristic graph of some source and the
distinguishability graph of some channel. Is there something to be learned from this relation
between sources and channels?

• It is known that two channels with no one-shot capacity, when put in parallel, may have positive
one-shot capacity [CCH11,Dua09,CS12]. Is there a similar effect with sources? Are there two
sources that are both one-way LOCC (LOCC-1) indistinguishable but in parallel are LOCC-1
distinguishable?

• The quantity ‖Λ‖Tr(Λ)/Tr(Λ2), which shows up in lemma 5.33, is only greater than 1 for the
reduced density operator of a non-maximally entangled state. Is this an ad hoc quantity, or is
it a meaningful measure of entanglement?
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5.A Duality Proofs
We will derive the dual of (5.51), which we rewrite here for reference.

ϑ
′
C(S) = max 〈Φ|I ⊗ ρ+ T |Φ〉

s.t. ρ � 0,Trρ = 1,

I ⊗ ρ+ T � 0,

T ∈ S ⊗ S,
R(T ) ∈ C, (5.64)

Section 4.7 of [GM12] gives the following duality recipe for conic programming over real vectors,
where G and H are closed convex cones:

(Primal) max〈c,x〉
s.t. b−A(x) ∈ G,

x ∈ H (5.65)
(Dual) min〈b,y〉

s.t. AT (y)− c ∈ H∗,
y ∈ G∗. (5.66)

This nearly suffices for our purposes, since (5.64) can be viewed as a program over real vectors by
considering the real inner product space of Hermitian matrices with the Hilbert–Schmidt inner product
(cf. [Wat11] for the special case where the cones are S+). The difficulty is that the superoperator R
is not Hermiticity-preserving, and so cannot be considered as a linear map on the space of Hermitian
matrices. This is not hard to fix, as the condition R(T ) ∈ C requires R(T ) to be Hermitian and so is
equivalent to the pair of conditions R(T )−R(T )† = 0 and R(T ) +R(T )† ∈ C. The first of these can
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also be written T − T ‡ = 0 (recall that we define X‡ = R(R(X)†)). Note that the left-hand sides of
these relations, seen as superoperators (e.g. T → T − T ‡), are not linear in the space L(A)⊗ L(A′)
since they each contain an anti-linear term. They are, however, linear in the real inner product space
of Hermitian matrices. Within this space, the map T → R(T ) +R(T )† is self-adjoint. Indeed, for
Hermitian L, T we have

〈L,R(T ) +R(T )†〉 = 〈L,R(T )〉+ 〈L,R(T )†〉
= 〈L,R(T )〉+ 〈R(T ), L〉∗
= 〈R(L), T 〉+ 〈T,R(L)〉∗

= 〈R(L), T 〉+ 〈R(L)†, T 〉
= 〈R(L) +R(L)†, T 〉.

The map T → T −T ‡ is also self-adjoint within the space of Hermitian matrices. The primal becomes

ϑ
′
C(S) = max 〈Φ|I ⊗ ρ+ T |Φ〉

s.t. 1− Trρ = 0, (5.67)
I ⊗ ρ+ T � 0, (5.68)

T − T ‡ = 0, (5.69)

R(T ) +R(T )† ∈ C, (5.70)

ρ � 0, T ∈ S ⊗ S, (5.71)

Applying the recipe (5.66) gives a dual formulation with a variable for each constraint in the primal:
λ for (5.67), W for (5.68), X for (5.69), and L′ for (5.70). In other words, y = λ⊕W ⊕X ⊕L′ (with
these thought of as vectors in the inner product space of Hermitian matrices). The (5.71) constraints
correspond to the x ∈ K constraint in (5.65), taking x = ρ⊕ T . The dual will have a constraint for
each variable of the primal: (5.72) for ρ and (5.73) for T . The dual is then

min λ

s.t. λI − TrAW − I � 0, (5.72)

− (W +X −X‡ +R(L′) +R(L′)†)− |Φ〉 〈Φ| ∈ (S ⊗ S)⊥, (5.73)
λ ∈ R,W � 0, X Hermitian, L′ ∈ C∗. (5.74)

Define Y = W+|Φ〉 〈Φ| and L = R(L′)+(X−X‡)/2. Note that L is not necessarily Hermitian, but L′
is since L′ ∈ C∗. We haveR(L)+R(L)† = L′+L′†+(R(X)−R(X‡)+R(X)†−R(X‡)†)/2 = 2L′ ∈ C∗
since R(X‡) = R(X)†. So these give a solution to

min λ

s.t. λI − TrAY � 0

Y + (L+ L†) ∈ (S ⊗ S)⊥,

R(L) +R(L)† ∈ C∗,
Y � |Φ〉 〈Φ|,
λ ∈ R, L ∈ L(A)⊗ L(A′). (5.75)

Conversely, a solution to (5.75) gives a solution to (5.72)-(5.74) via W = Y − |Φ〉 〈Φ|, L′ = (R(L) +
R(L)†)/2, X = [(L− L‡) + (L− L‡)†]/4. The program (5.75) is equivalent to (5.52).

We now show the primal and dual to have equal and finite optimum values. Let L′ be in the
relative interior10 of C∗, and let X = 0. There is a W � 0 such that the left hand side of (5.73) is

10 See [BV04] for the definition of relative interior.
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proportional to negative identity, and so is in (S ⊗ S)⊥. For a large enough λ, (5.72) is satisfied with
strict inequality. Thus the dual program (5.72)-(5.74) is strictly feasible. The dual has finite value
because W � 0 requires λ ≥ 1 in (5.72). Therefore strong duality holds: the primal (5.67)-(5.71)
and dual (5.72)-(5.74) are both feasible and take the same optimal value. Since these are equivalent
to (5.64) and (5.75), these two are also feasible and take the same value.

We now compute the primal for (5.55), which we rewrite here for reference.

ϑ
+

C (S) = min ‖TrAY ‖
s.t. Y ∈ S⊥ ⊗ S⊥,

R(Y ) ∈ C,
Y � |Φ〉 〈Φ| . (5.76)

As with ϑ
′
C , we can rewrite this using only Hermiticity preserving maps:

ϑ
+

C (S) = min λ

s.t. λI − TrAY � 0, (5.77)
Y − |Φ〉 〈Φ| � 0, (5.78)

Y − Y ‡ = 0, (5.79)

R(Y ) +R(Y )† ∈ C, (5.80)

λ ∈ R, Y ∈ S⊥ ⊗ S⊥. (5.81)

The primal will have a variable for each constraint in the dual: ρ for (5.77), T ′ for (5.78), X for (5.79),
and L′ for (5.80). In other words, x = ρ⊕ T ′ ⊕X ⊕L′. The (5.81) constraints correspond to y ∈ G∗
in (5.66). The dual will have a constraint for each variable of the primal: (5.82) for λ and (5.83) for
Y . The primal is then

max 〈Φ|T ′|Φ〉
s.t. 1− Trρ = 0, (5.82)

I ⊗ ρ− T ′ −X +X‡ −R(L′)−R(L′)† ∈ (S⊥ ⊗ S⊥)⊥, (5.83)
ρ � 0, T ′ � 0, X Hermitian, L′ ∈ C∗. (5.84)

Define T = T ′ − I ⊗ ρ and L = R(L′) + (X −X‡)/2. Note that L is not necessarily Hermitian, but
L′ is since L′ ∈ C∗. As before, we have R(L) +R(L)† ∈ C∗. These give a solution to

max 〈Φ|I ⊗ ρ+ T |Φ〉
s.t. Trρ = 1,

T + (L+ L†) ∈ (S⊥ ⊗ S⊥)⊥

R(L) +R(L)† ∈ C∗,
ρ � 0, I ⊗ ρ+ T � 0,

L ∈ L(A)⊗ L(A′). (5.85)

Conversely, a solution to (5.85) gives a solution to (5.82)-(5.84) via T ′ = T + I ⊗ ρ, L′ = (R(L) +
R(L)†)/2, X = [(L− L‡) + (L− L‡)†]/4. The program (5.85) is equivalent to (5.54).

We now show the primal and dual to have equal, but not necessarily finite, optimum values. Let
L′′ be in the relative interior of C∗; then for any c > 0, L′ = cL′′ is also in the relative interior of
C∗. Let X = 0 and ρ = I/ dim(A). For sufficiently small c, there is a T ′ � 0 such that the left
hand side of (5.83) vanishes. Thus the primal (5.82)-(5.84) is strictly feasible. If the primal takes
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finite optimum value, then by strong duality the dual is feasible and takes the same value. On the
other hand, if the primal is unbounded (has infinite optimal value) then by weak duality the dual is
infeasible and so also has infinite value. See lemma 5.30 for an example of such a case.
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