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Background: Source-channel coding
Suppose that Alice and Bob receive a pair (x, u) with probability Q(x, u). Alice wishes
to send x to Bob, using a noisy classical channel N , such that Bob can determine x
with zero chance of error. Without making use of entanglement, this is known [2] to be
possible iff there is a graph homomorphism G→ H between the graphs

x ∼G y ⇐⇒ ∃u ∈ U such that Q(x, u)Q(y, u) 6= 0.
s ∼H t ⇐⇒ N (v|s)N (v|t) = 0 for all v ∈ V.

Basically, G represents the information that needs to be sent and H represents the
information that survives the channel. A homomorphism G → H ensures that the
needed information makes it through the channel intact.

If Alice and Bob share an entangled state they can use the strategy depicted in the figure,
which is described in greater detail in [3].
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After Alice’s measurement, Bob’s half of the entanglement resource is in the state
ρxs = TrA{(Mx

s ⊗ I)|ψ〉 〈ψ|}.

An error free decoding operation exists for Bob if and only if these states are orthogonal
for every x ∈ X consistent with the information in Bob’s possession (i.e. u and v) [3].

ρxs ⊥ ρ
y
t for all x ∼G y and s 6∼H t.

If such |ψ〉 and {Mx
s } exist, we say there is an entanglement assisted homomorphism

G
∗→ H.

The largest n such that Kn
∗→ H is the entanglement assisted independence number

α∗(H), the largest number of error-free codewords that can be sent through channel
N . The smallest n such that G ∗→ Kn is the entanglement assisted chromatic number
χ∗(G), the size of the smallest channel that Alice could use to convey x from source Q.

Background: Quantum Homomorphism
A related concept, quantum homomorphism, is defined in terms of a nonlocality game.
Suppose that Alice and Bob share an entangled state but are not allowed to communicate.
Alice is told a vertex x ∈ V (G) and Bob is told y ∈ V (G). Alice and Bob then reply
with s, t ∈ V (H). If x = y then their answers must be the same. If x ∼G y then their
answers must satisfy s ∼H t. If such a game can be won with certainty, then there is a
quantum homomorphism G

q→ H. It can be shown that projective measurements on a
maximally entangled state suffice here.

Semidefinite relaxation
We consider several relaxations of G ∗→ H, and relate these to monotonicity of the Lovász ϑ
function and its variants.

• Say G +→ H if there is a probability distribution P (s, t|x, y) such that
(i) Psx;ty is a positive semidefinite matrix
(ii) P (s ∼H t|x ∼G y) = 1

• Say G V→ H if there is a probability distribution P (s, t|x, y) such that
(i) Psx;ty is a positive semidefinite matrix
(ii) P (s ∼H t|x ∼G y) = 1
(iii) P (s = t|x = y) = 1

• Say G B→ H if there is a quasi-probability distribution P (s, t|x, y) (i.e. allowing negative
probabilities) such that
(i) Psx;ty is a positive semidefinite matrix
(ii) P (s ∼H t|x ∼G y) = 1
(iii) P (s = t|x = y) = 1

Note: if Psx;ty is required to be completely PSD [4] rather than PSD in the above definitions,
then G +→ H becomes G ∗→ H and G V→ H becomes G q→ H.

Theorem

G→ H

G
q→ H ϑ̄+(G) ≤ ϑ̄−(H)

G
∗→ H G

V→ H

G
+→ H

ϑ̄(G) ≤ ϑ̄(H)
ϑ̄−(G) ≤ ϑ̄−(H)
ϑ̄+(G) ≤ ϑ̄+(H)

G
B→ Hϑ̄(G) ≤ ϑ̄(H) In the figure, arrows mean one condition

implies the other. Dotted arrows mean we
don’t know whether the reverse implication
holds. ϑ̄(G), ϑ̄−(G), and ϑ̄+(G) are the
Lovász, Schrijver, and Szegedy numbers of the
complement graph G.

ϑ̄(G) = max{〈B, J〉 : B � 0,TrB = 1,
Bij = 0 for i 6∼ j, i 6= j}, (1)

ϑ̄(G) = min{λ : ∃Z � 0, Zii = λ− 1,
Zij = −1 for i ∼ j}, (2)

ϑ̄−(G) = min{λ : ∃Z � 0, Zii = λ− 1,
Zij ≤ −1 for i ∼ j}.

ϑ̄+(G) = min{λ : ∃Z � 0, Zii = λ− 1,
Zij = −1 for i ∼ j,

Zij ≥ −1 for all i, j}.

Proof

• G
∗→ H =⇒ G

+→ H: Let P (s, t|x, y) = 〈ρxs , ρ
y
t 〉/〈ρ, ρ〉.

• G
∗→ H =⇒ G

B→ H: W.l.o.g. assume the Mx
s are projectors. Let

P (s, t|x, y) =
〈
ψ
∣∣Mx

sM
y
t ⊗ I

∣∣ψ〉.
• G

B→ H =⇒ ϑ̄(G) ≤ ϑ̄(H): Let Zst be feasible for (2) for H. Then
Yxy =

∑
stZstP (s, t|x, y) is feasible for G with the same value.

• ϑ̄(G) ≤ ϑ̄(H) =⇒ G
B→ H: Let B be feasible for (1) for H and Z be feasible for (2) for

G, both with value λ = ϑ̄(H). Let matrix D consist of the diagonal entries of B. Define
P (s, t|x, y) = λ−1 [Bst + (λ− 1)−1Zxy(λDst −Bst)

]
.

Corollary
The one-shot zero-error entanglement assisted capacity of a channel, α∗(H), is upper
bounded by ϑ̄−(H).

Corollary
The entanglement assisted chromatic number, χ∗(G), is lower bounded by ϑ̄+(G).
This was already shown in [3].

Corollary
The entanglement assisted cost rate (asymptotic number of channel uses needed per
source instance) is bounded as follows:

η∗(G,H) ≥ log ϑ̄(G)
log ϑ̄(H)

.

Corollary
Beigi [5] introduced a quantity β(H) defined as the largest n such that there exist
vectors |w〉 6= 0 and |wxs 〉 with x ∈ {1, . . . , n} and s ∈ V (H) which satisfy∑

s

|wxs 〉 = |w〉

〈wxs |w
y
t 〉 = 0 for all x 6= y, s 6∼H t

〈wxs |wxt 〉 = 0 for all s 6= t.

Beigi showed that α∗(H) ≤ β(H) ≤ bϑ̄(H)c and asked whether β(H) = bϑ̄(H)c.
We answer this in the affirmative since β(H) is just the largest n such that Kn

B→ H

(let Psx;ty be the Gram matrix of |wxs 〉).

Corollary
In [6] a quantity χvect(G) was introduced which, in our terminology, is the largest
n such that Kn

V→ G. The question was posed whether there is a graph such
that χvect(G) < χq(G). We show that χvect(G) = dϑ̄+(G)e and that the graph
G = C5 ∗K3 satisfies χvect(G) < χq(G).
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