Base Fields
HilbertBaseField defines how the mathematics of HilbertArray works. Normally
you don’t need to worry about this because usually the default implementation
is appropriate. It is not recommened to call the constructor directly.
Instead, use the interface provided by
qitensor.factory.base_field_lookup(), or just use the dtype
parameter of the factory functions in qitensor.factory. A subclass,
SageHilbertBaseField, provides the ability to create arrays over Sage
types (e.g. SR). This, too, is accessed through base_field_lookup or by
passing the dtype parameter.
-
class qitensor.basefield.HilbertBaseField
Bases: object
HilbertBaseField(dtype, unique_id)
-
assert_same(self, HilbertBaseField other)
Asserts that this object is the same as other.
-
complex_unit(self)
-
dtype
dtype: object
-
eye(self, long size) → ndarray
-
frac(self, p, q)
-
fractional_phase(self, int a, int b)
-
infty(self)
-
input_cast_function(self)
-
latex_formatter(self, data, dollar_if_tex)
-
log2(self, x)
-
mat_adjoint(self, ndarray mat) → ndarray
-
mat_conj(self, ndarray mat) → ndarray
-
mat_det(self, ndarray mat)
-
mat_eig(self, ndarray mat, bool hermit)
-
mat_eigvals(self, ndarray mat, bool hermit)
-
mat_expm(self, ndarray mat) → ndarray
-
mat_inverse(self, ndarray mat) → ndarray
-
mat_logm(self, ndarray mat) → ndarray
-
mat_n(self, ndarray mat, prec=None, digits=None) → ndarray
-
mat_norm(self, ndarray arr, p)
-
mat_pinv(self, ndarray mat, rcond) → ndarray
-
mat_pow(self, ndarray mat, n) → ndarray
-
mat_qr(self, ndarray mat)
-
mat_simplify(self, ndarray mat, full=False) → ndarray
-
mat_svd(self, ndarray mat, full_matrices)
-
mat_svd_vals(self, ndarray mat)
-
matrix_np_to_sage(self, ndarray np_mat, R=None)
-
matrix_sage_to_np(self, sage_mat) → ndarray
-
random_array(self, shape) → ndarray
Returns random array with standard normal distribution
-
sage_ring
sage_ring: object
-
sqrt(self, x)
-
unique_id
unique_id: str
-
xlog2x(self, x)